Archivi Blog

Ricordando il terremoto del 6 aprile 2009: 4) Il rilievo del danno con qualche considerazione sul futuro

Il terremoto nell’aquilano del 6 aprile 2009 ha avuto una intensità epicentrale compresa tra il IX e il X grado della scala MCS: questo vuol dire che le località più danneggiate, in questo caso Onna e Castelnuovo, hanno subito danni gravissimi e crolli a più della metà degli edifici. Il terremoto è anche conosciuto semplicemente come terremoto dell’Aquila, in quanto dopo un secolo, è stata colpita in Italia una città importante, con decine di migliaia di abitanti e un impianto urbanistico vasto e complesso, e dove purtroppo si sono concentrati due terzi delle vittime.

L’assegnazione dell’intensità macrosismica necessita della tempestiva raccolta dei dati sul danneggiamento nei centri colpiti tramite rilievi di dettaglio che permettono di ricostruire l’impatto del terremoto sull’edificato. Subito dopo l’evento l’INGV aveva attivato il Gruppo Operativo per il rilievo macrosismico QUEST – costituito, in questa occasione, da squadre di esperti rilevatori delle sezioni INGV di Bologna, Roma, Napoli e Catania, in coordinamento con squadre del Dipartimento della Protezione Civile (supportate da tecnici ENEA) e da colleghi dell’Università della Basilicata e del CNR (IMAA) – avviando nell’immediato il rilievo degli effetti macrosismici.

La valutazione finale dell’intensità in ogni località (Figura 1) è quindi frutto del lavoro collegiale di un team di esperti di rilevamento macrosismico ed è stata condotta a partire dall’analisi e discussione delle osservazioni riportate dalle singole squadre. La valutazione del grado macrosismico è stata condotta sulla base della scala Mercalli-Cancani-Sieberg (MCS).

Figura 1. Mappa delle intensità del terremoto del 6 aprile 2009 (Rovida et al., 2015).

Il terremoto dell’Aquila ha tuttavia prodotto nuovi stimoli e riflessioni per quanto riguarda le tecniche di rilievo macrosismico; proprio in quell’occasione è stata usata per la prima volta in modo sistematico, per lo studio dei danni nella città dell’Aquila, anche la scala EMS-98 (Grünthal, 1998; Tertulliani et al., 2011).

Figura 2. Questa mappa mostra, con una scala di colori, come è stata valutata la vulnerabilità (intesa come suscettibilità al danno sismico), per tutti gli edifici del centro storico dell’Aquila, all’epoca dello studio citato. Con il rosso sono rappresentati gli edifici considerati particolarmente vulnerabili, con il verde chiaro quelli più resistenti. In questa figura è evidente che gli edifici più recenti (classi C e D in giallo e verde chiaro) circondano la parte più antica del centro storico, caratterizzata da edifici classe a vulnerabilità più alta (classi A e B, in rosso e arancio).

L’uso della scala EMS-98 permette di classificare le diverse tipologie costruttive presenti nelle nostre città e paesi e, diversamente da quanto si poteva fare con le precedenti scale macrosismiche, la EMS-98 consente di valutare l’impatto del terremoto su edifici a diversa resistenza, dai più vulnerabili (classe A) a quelli antisismici (classe D), a cui viene assegnato un grado di danno (da 0: non danneggiato, a 5: collasso) (esempio in Figura 2 per la città di L’Aquila). L’insieme di queste valutazioni riconduce lo scenario complessivo degli effetti in una località a indicare un grado di intensità. Le modalità di applicazione del rilievo in EMS-98, implementate durante il terremoto del 2009 sono state poi adottate per tutti i terremoti che si sono succeduti nel decennio appena trascorso. Il rilievo svolto, edificio per edificio, nel centro storico dell’Aquila ha permesso di raccogliere dati di tale dettaglio che sono divenuti la base per studi multidisciplinari con tecniche sismologiche, ingegneristiche e satellitari per mettere in evidenza la distribuzione territoriale e le caratteristiche dei danni subiti dagli edifici. Queste elaborazioni, ad esempio, hanno permesso di valutare il ruolo degli “effetti di sito” e ricostruire quanto il danneggiamento fosse stato influenzato anche da fattori di geologia superficiale, indipendentemente dalla vulnerabilità dell’edificato (Tertulliani et al., 2012; Di Giulio et al., 2014; Bordoni et al., 2014). Si è visto ad esempio che nella zona meridionale del centro storico dell’Aquila il forte danneggiamento, in particolare per quanto riguarda il cemento armato, coincideva con aree a evidente amplificazione locale (vedi Figure 3 e 4), e la presenza della formazione cosiddetta dei Limi Rossi del Colle dell’Aquila.

Figura 3. In questa figura abbiamo evidenziato solo gli edifici che subirono crolli parziali o totali. La scala di colore è la stessa della figura 2. Come si nota gli edifici in cemento armato (in giallo) crollati o parzialmente crollati (gradi di danno 4 e 5), erano edificati nella zona periferica del centro storico a sud ovest, a grande predominanza di Limi Rossi. In alto a destra in verde si nota il Forte Spagnolo.

 

Figura 4. Nei grafici è mostrata la frequenza percentuale di edifici danneggiati da danno 0 a danno 5 (muratura / classe B a sinistra, cemento armato / classe C a destra) in confronto al terreno di edificazione. Si nota chiaramente come oltre il 65% degli edifici in cemento armato crollati (D5, colonna bianca all’estrema destra) fossero edificati sui Limi Rossi (red silts).

È inoltre interessante il contributo che i dati macrosismici, in questo caso utilizzati come verità a terra (ground truth), offrono per il confronto con sistemi automatici di damage detection con l’uso di immagini satellitari.

I dati sugli edifici raccolti nel centro dell’Aquila rappresentano il riferimento per la calibrazione di algoritmi di riconoscimento e classificazione del danno in termini di scala macrosismica (o altro tipo di classificazione) che in via automatica possono fornire una stima preliminare del danneggiamento in tempi molto rapidi (esempi in Figura 5), per indirizzare ulteriori interventi di protezione civile (Dell’Acqua et al., 2011; Anniballe et al., 2018).

Macintosh HD:Users:andreatertulliani:Desktop:Screenshot_2019-05-03 Earthquake damage mapping_ An overall assessment of ground surveys and VHR image change detection aft[...].png

Figura 5. Esempio di confronto tra classificazione automatica del danno e verità a terra (INGV-QUEST) (Dell’Acqua et al., 2011). Al poligono in rosso viene assegnato un grado di danneggiamento in base all’algoritmo di riconoscimento.

Ma al di là degli sviluppi scientifici, che ogni terremoto inevitabilmente stimola, l’analisi macrosismica si innesta naturalmente sul terreno dell’impatto umano e economico prodotto da un evento come quello di dieci anni fa.

All’indomani del terremoto di L’Aquila la comunità scientifica internazionale mise immediatamente in evidenza la sproporzione tra la magnitudo del terremoto del 6 aprile, Mw 6.1-6.3 (per la stima della magnitudo si veda qui), e l’entità dei danni e il numero delle vittime, un costo troppo elevato per un paese occidentale e moderno (Tertulliani, 2009).

A dieci anni dal terremoto, c’è da chiedersi se la stessa domanda sia sempre attuale e se la lezione del terremoto aquilano sia servita.

Nei dieci anni seguiti al 6 aprile 2009 il territorio italiano ha avuto ben poco riposo dal punto di vista sismico, e la comunità scientifica e quella ingegneristica hanno avuto diversi altri momenti (Emilia 2012, Italia centrale 2016-2017, Ischia 2017, Molise e Etna 2018) per riproporre lo stesso quesito e fornire risposte contrastanti.

Il terremoto aquilano aveva fatto riemergere, dal punto di vista del danno osservato, alcune croniche debolezze del patrimonio costruito italiano: l’edilizia tradizionale, spesso priva di manutenzione, pagava il prezzo più alto, mentre le nuove costruzioni avevano statisticamente mostrato una “ovvia” miglior resistenza. Se possiamo infatti descrivere il crollo di un edificio recente in cemento armato come un incidente, dovuto a cause ben precise, spesso singolari (si veda ad esempio l’intervista a Rui Pinho), il crollo degli edifici in muratura tradizionale per eventi di magnitudo considerata moderata, è purtroppo la quasi normalità in Italia, al confronto di altri Paesi dove si è investito maggiormente in prevenzione. Una grande maggioranza di questo tipo di edifici infatti è vetusta, con murature scadenti e scarsa manutenzione, specialmente nei piccoli centri appenninici; necessiterebbe quindi di interventi di consolidamento.

Il fatto che nel 2009 vi siano stati più morti in edifici di cemento armato che in case di muratura (135 vittime in 16 palazzi contro meno della metà in centinaia di case in muratura relativamente a L’Aquila) è sicuramente dovuto alla maggior concentrazione di abitanti in tali grandi strutture, ma anche perché quella seppur piccola percentuale di edifici in cemento armato che sono crollati, aveva molto probabilmente problemi strutturali.

Nonostante ciò, se analizziamo i numeri relativi al centro storico dell’Aquila notiamo come, su circa 500 edifici in cemento armato, meno del 6% ha sofferto danni che vanno dal grave danno strutturale al collasso. Su circa 1300 edifici in muratura (pietra locale, più o meno lavorata, in qualche caso mattoni) questa percentuale sale invece a oltre il 20%, e sale ancora di più nei centri minori, dove l’edilizia tradizionale era più povera e la qualità delle murature peggiore. Queste statistiche non tengono conto delle chiese.

Il terremoto di Amatrice dell’agosto del 2016 ha purtroppo confermato proprio questa criticità (D’Ayala and Paganoni, 2011; Sorrentino et al. 2018).

Ci vorrà qualche decennio per capire se la lezione impartita dal terremoto aquilano in termini di sicurezza sismica avrà risultati positivi. Il caso recente dell’Umbria, dove il terremoto del 30 ottobre 2016 (Mw 6.5) non ha fatto vittime, e prodotto danni tutto sommato contenuti dovuti anche alla buona pratica della ricostruzione post 1997, fa ben sperare.

A cura di Andrea Tertulliani, INGV – Roma1.


Bibliografia e sitografia

Anniballe R., Noto F., Scalia T., Bignami C., Stramondo S., Chini M., Pierdicca N., (2018). Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake, Rem. Sens. Environ. 210,166-178, doi: 10.1016/j.rse.2018.03.004.

D’Ayala D.F. and Paganoni S. (2011). Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009, Bull. Earthq. Eng. 9, 81, doi: 10.1007/s10518-010-9224-4.

Dell’Acqua F., Bignami, C., Chini, M., Lisini, G., Polli D.A., Stramondo, S. (2011). Earthquake damagesr mapping by satellite remote sensing data: L’Aquila April 6th, 2009 event, Ieee J. Selected Topics in Applied Earth Observations and Remote Sensing., 4, 935-943, doi: 10.1109/JSTARS.2011.2162721

https://terremotiegrandirischi.com/2017/09/27/che-cosa-vuol-dire-antisismico-what-does-anti-seismic-mean-intervista-a-rui-pinho/

Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-CPTI15

Sorrentino L., Cattari S., da Porto F., Magenes G., Penna A. (2018). Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull. Earthq. Eng. doi: 10.1007/s10518-018-0370-4.

Tertulliani A., Leschiutta I., Bordoni P., Milana G (2012). Damage Distribution in L’Aquila City (Central Italy) During the 6 April 2009 Earthquake, Bull. Seismol. Soc. Am. 102:1543-1553, doi: 10.1785/0120110205.

Tertulliani A., Arcoraci L., Berardi M., Bernardini F., Camassi R., Castellano C., Del Mese S., Ercolani E., Graziani L., Leschiutta I., Rossi A., Vecchi M. (2011). An application of EMS98 in a medium-sized city: the case of L’Aquila (Central Italy) after the april 6, 2009 Mw 6.3 earthquake, Bull. Earthq. Eng. 9, 67-80, doi: 10.1007/s10518-010-9188-4.

Tertulliani A. (2011). I segni sul tessuto urbano, in Darwin, n. 42, anno 7 Editoriale Darwin.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Le shakemap: una pronta ed efficace visualizzazione dello scuotimento prodotto da un terremoto

Le mappe di scuotimento (ShakeMap) forniscono una immediata visualizzazione del livello di scuotimento (shaking) di una zona colpita o interessata da un terremoto.
L’INGV da diversi anni calcola le ShakeMap (http://shakemap.rm.ingv.it; http://cnt.rm.ingv.it/help#impatto) che riportano i valori di picco registrati da accelerometri e sismometri, principalmente forniti dalla Rete Accelerometrica Nazionale (RAN) del Dipartimento per la Protezione Civile e dalla Rete Sismica Nazionale (RSN) dell’INGV, presenti nella zona del terremoto. Ove non sono presenti valori osservati, il software interpola i dati avvalendosi, ad esempio, delle leggi di attenuazione dello scuotimento con la distanza disponibili per l’area in esame.

Le mappe riportano sia valori fisici come ad esempio accelerazione e velocità di picco del suolo sulle componenti orizzontali, che una trasposizione di questi valori in intensità macrosismica (Mercalli Cancani Sieberg, MCS) che ovviamente non è osservata ma stimata dai dati. Questa distribuzione del risentimento atteso fornisce una prima indicazione sul livello di scuotimento osservato e quindi del potenziale impatto, informazione molto utile alla Protezione Civile per il coordinamento e l’organizzazione delle squadre di soccorso in caso di terremoti rilevanti.

intensity_M6_main

ShakeMap (mappa di scuotimento) espressa in intensità strumentale (scala di intensità Mercalli-Cancani-Sieberg, MCS) dell’evento principale M6.0 delle ore 03.36 italiane del 24 agosto 2016, determinata utilizzando i dati della Rete Sismica Nazionale dell’INGV (triangoli rossi), della Rete Accelerometrica Nazionale (RAN, triangoli blu) e la faglia estesa ricavata da dati sismologici (rettangolo grigio). La stella rappresenta l’epicentro.

La mappa di scuotimento dell’evento principale di magnitudo M6.0 avvenuto alle ore 03.36 italiane del 24 agosto 2016 (mostrata nella figura sopra) espressa in termini di intensità in scala Mercalli-Cancani-Sieberg (MCS) è ottenuta convertendo i valori di picco del moto del suolo (espresso in termini di accelerazione e in velocità) in intensità attraverso una relazione empirica ricavate dai dati registrati e macrosismici disponibili.

La legenda riportata alla base della figura indica la scala per la conversione da valori di accelerazione e velocità a intensità. Nel caso specifico, il valore massimo è superiore al grado VIII della scala MCS, mentre valori minimi ai bordi della mappa sono circa del V-VI grado.

Figura 2. Medesime mappe di scuotimento della Figura 1 presentate in forma semplificata. In particolare, le mappe evidenziano il livello di scuotimento utilizzando colori vieppiù “caldi” man mano che scuotimento aumenta. La dicitura WEAK-STRONG-SEVERE (debole-forte-severa) consente una rapida valutazione anche del potenziale impatto dell’evento.

Confronto tra le mappe di scuotimento (in forma semplificata) di quattro diversi terremoti della sequenza sismica in corso in Italia centrale. In particolare, le mappe evidenziano il livello di scuotimento utilizzando colori più caldi (dall’azzurro al rosso intenso) man mano che scuotimento aumenta. La dicitura WEAK-STRONG-SEVERE (debole-forte-severo) definisce il livello di scuotimento (shaking) e consente una rapida valutazione del potenziale impatto dell’evento.

Nella figura qui sopra sono mostrate le mappe semplificate di quattro diversi terremoti della sequenza sismica in Italia centraleil terremoto di magnitudo M3.1 avvenuto il 1 settembre alle ore 01.55 UTC in provincia di Macerataquello di magnitudo M4.2 avvenuto il 28 Agosto alle ore 15.55 UTC in provincia di Ascoli Picenoil terremoto di magnitudo M5.3 avvenuto il 24 Agosto alle ore 02.33 UTC in provincia di Perugia e l’evento principale della sequenza, di magnitudo M6.0 avvenuto il 24 Agosto alle ore 01.36 UTC in provincia di Rieti.

Tali mappe adottano la stessa scala di colore per le intensità fornendo, tramite la dicitura WEAK-STRONG-SEVERE (debole-forte-severo), anche una prima idea del livello di scuotimento del suolo prodotto dal terremoto. In pratica, con WEAK (azzurro) lo scuotimento è appena avvertito. Con STRONG (verde-giallo) la scossa si avverte molto distintamente e forte e, in taluni casi, potrebbe anche causare danni lievi (per es. crepe nell’intonaco). Infine, lo scuotimento è molto forte (SEVERE) arrecando danni consistenti fino al collasso di interi edifici quando il colore passa dall’arancio al rosso intenso.
Nel confrontare le mappe calcolate per i quattro eventi sismici, è importante ricordare che, in termini di energia elastica rilasciata durante il processo di rottura sulla faglia all’origine del terremoto, vi è un fattore di 32 per ogni unità di magnitudo. Pertanto, tra terremoti di magnitudo M3.1 e di magnitudo M6.0, l’energia rilasciata si differenzia di circa 30.000 volte (vedi anche http://cnt.rm.ingv.it/help#magnitudo).
Le mappe illustrano proprio la differenza di scuotimento indotto da terremoti che rilasciano, come onde sismiche e quasi istantaneamente, quantità  molto diverse di energia elastica immagazzinata precedentemente nelle rocce stesse.

a cura di Alberto Michelini, Licia Faenza e Valentino Lauciani, INGV-CNT.

Nota: Le ShakeMap, calcolate per tutti i terremoti con magnitudo M ≥ 3.0 che si verificano in Italia e nelle zone circostanti, sono pubblicate sul sito web http://shakemap.rm.ingv.it/. Qualora risultino disponibili nuove informazioni o ulteriori dati relativi al terremoto (e.g. la dimensione della faglia del terremoto -faglia estesa-, nuovi dati da reti gestite da altri enti) le mappe vengono aggiornate per migliorare la definizione dello scuotimento del terreno, in particolare nelle zone epicentrali.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

%d blogger hanno fatto clic su Mi Piace per questo: