Archivi Blog

Ricordando il terremoto del 6 aprile 2009: 2) Modelli di faglia

In questo secondo contributo alla conoscenza del terremoto del 2009 vediamo come sia stato possibile ricostruire il processo di rottura associato alla scossa principale del 6 aprile alle ore 3:32, attraverso l’utilizzo di dati geodetici e sismologici.

Deformazioni e modelli di faglia geodetici

La deformazione della crosta terrestre causata dalla sequenza sismica dell’Aquila del 2009 è stata misurata sia da stazioni GPS collocate a terra in un’ampia regione dell’Italia centrale (Anzidei et al., 2009; Cheloni et al., 2010; D’Agostino et al., 2012; Gualandi et al., 2014), sia dai satelliti con le tecniche radar (Atzori et al., 2009; Walters et al., 2009; Trasatti et al., 2011), e sia da tecniche di geodesia terrestre (Cheloni et al., 2014). Tali tecniche hanno permesso di evidenziare gli spostamenti della superficie terrestre e realizzare così un modello di faglia (posizione, estensione, spostamento dei due lembi della faglia) per l’evento principale del 6 aprile del 2009 (Anzidei et al., 2009; Atzori et al., 2009, Cheloni et al., 2010; Walters et al 2009).

Figura 1 – Spostamenti cosismici orizzontali misurati (frecce nere) e simulati (frecce rosse) ai caposaldi GPS presenti nella zona epicentrale. Il rettangolo blu rappresenta il modello di faglia (proiezione sulla superficie) ricavato da tali spostamenti. Il riquadro in basso a destra mostra invece gli spostamenti verticali osservati e modellati (Anzidei et al., 2009.)

In particolare i massimi spostamenti orizzontali e verticali osservati furono dell’ordine dei 10 e 15 cm alla stazione GPS denominata CADO (Figura 1).

Figura 2 – Interferogrammi calcolati con i satelliti (a) COSMO-Sky-Med e Envisat (b and c) per la scossa del 6 aprile. La stella rossa indica l’epicentro del terremoto del 6 aprile (Atzori et al., 2009).

Gli interferogrammi (ottenuti dai sensori radar satellitari in passaggi prima e dopo il terremoto) mostrano un campo di deformazione caratterizzato da frange concentriche (Figura 2) indicanti che il terreno si era allontanato dal satellite (lungo la linea di vista – Light Of Sight – del satellite) su un’area di circa 480 km2 estesa verso sud-est a partire dall’epicentro del terremoto del 6 aprile. I massimi spostamenti osservati lungo la linea di vista dei satelliti furono dell’ordine dei 20-28 cm, misurati tra la città dell’Aquila e Fossa (AQ).

Per la prima volta in Italia, sono stati inoltre osservati dei movimenti lenti della superficie terrestre nell’area circostante l’epicentro, dovuti al movimento post-terremoto che avviene sul piano di faglia successivamente al terremoto (Cheloni et al., 2010; D’Agostino et al., 2012; Cheloni et al., 2014; Gualandi et al., 2014). Definiamo “lento” questo spostamento perché avviene in un arco temporale di molte settimane o alcuni mesi, mentre durante il terremoto lo spostamento di tutta la faglia avviene in pochi secondi, come vedremo più avanti. Questo movimento lento viene definito afterslip (scivolamento post-sismico). Le registrazioni giornaliere GPS disponibili mostrano chiaramente il lento movimento avvenuto nei giorni successivi alla scossa principale (Figura 3).

Figura 3 – Spostamento misurato alle stazioni GPS dell’Aquila (AQUI) e di Paganica (PAGA) durante (freccia rossa) e nelle settimane successive (freccia blu) al terremoto del 6 aprile 2009. Sono mostrate le tre componenti del movimento (North, East, Up) (Cheloni et al., 2010).

In particolare, i dati GPS misurati unitamente agli interferogrammi mostrati sopra, misurati prima e dopo il terremoto principale del 6 aprile, hanno permesso di calcolare lo spostamento del terreno e ricavare quindi un modello di faglia per la sequenza del 2009. I principali modelli di faglia sono stati proposti da Anzidei et al. (2009), Atzori et al. (2009), Walters et al. (2009), Cheloni et al. (2010) e Gualandi et al. (2014). Altri modelli vennero proposti da Balestra et al. (2015) e Castaldo et al. (2018).

Figura 4 – Modello di faglia e distribuzione di movimento (slip) sul piano di faglia stimato da misure di spostamento GPS. Le frecce nere rappresentano gli spostamenti osservati, mentre quelle bianche gli spostamenti previsti dal modello. La scala di colori rappresenta l’entità di movimento stimata sul piano di faglia (Gualandi et al., 2014).

Gli spostamenti cosismici medi sull’intero piano di faglia ottenuti dall’inversione dei dati GPS (Anzidei et al., 2009; Cheloni et al., 2010; Gualandi et al., 2014), sono di circa 50-60 cm, in accordo con l’inversione di dati interferometrici (Atzori et al., 2009, Walters et al., 2009), con massimi movimenti di circa 1 metro (Figura 4).

In generale, i vari modelli di faglia proposti per la scossa del 6 aprile 2009, concordano nel definire come sorgente sismogenetica della sequenza dell’Aquila del 2009 la faglia di Paganica. Tutti i modelli la caratterizzano come una faglia con geometria planare con un angolo di immersione (dip) verso SW di circa 50° fino ad una profondità di circa 10 km, attivatasi per una lunghezza di circa 16 km. La geometria della faglia identificata dai dati sopra descritti è in accordo con quanto mostrato dalla distribuzione in mappa e in profondità delle repliche (o aftershocks), descritti nell’articolo precedente.

Ulteriori dettagli sul processo di fagliazione, in particolare quelli legati all’evoluzione temporale della rottura durante il terremoto del 6 aprile, possono essere ricavati dai dati accelerometrici registrati dalle stazioni poste in area epicentrale, come illustrato nel seguito.

Modellazione congiunta sismologica / geodetica

Il terremoto del 6 aprile 2009 e i principali eventi della sequenza sismica ad esso associati sono stati registrati da diverse stazioni digitali appartenenti alla “Rete Accelerometrica Nazionale” (RAN) gestita dal Dipartimento della Protezione Civile, da diverse stazioni accelerometriche a larga banda della Rete MedNet e dalle stazioni sismiche permanenti digitali della Rete Sismica Nazionale Italiana dell’INGV (tutti i dati sono disponibili su http://itaca.mi.ingv.it/ItacaNet_30/#/home). Subito dopo l’evento principale, l’INGV in collaborazione con il Laboratoire de Géophysique Interne et Tectonophysique (LGIT) di Grenoble ha provveduto all’installazione di una fitta rete temporanea composta di ulteriori 40 stazioni sismiche digitali (Chiaraluce et al., 2011), che ha permesso la registrazione dell’intera sequenza. I dati accelerometrici registrati dalle stazioni dislocate nella regione epicentrale (Figura 5) durante il terremoto dell’Aquila del 2009, costituiscono per la comunità scientifica un set di osservazioni senza precedenti per un evento con meccanismo di faglia normale.

Figure1NEW

Figura 5 – Mappa del terremoto dell’Aquila: – il rettangolo in rosso rappresenta la proiezione in superficie del piano di faglia; – i triangoli bianchi indicano le stazioni accelerometriche strong-motion e i punti in viola i siti GPS selezionati nello studio di Cirella et al., (2012) per la modellazione della sorgente sismica. L’epicentro del terremoto è identificato dalla stella rossa mentre in giallo vengono riportate le posizioni della città de L’Aquila e di Paganica.

L’analisi e la modellazione della radiazione sismica associata al terremoto dell’Aquila, eseguite attraverso l’applicazione di metodologie che tengono conto degli effetti dovuti alla vicinanza della sorgente sismogenetica, ha permesso di ricostruire l’evoluzione spazio-temporale della rottura co-sismica avvenuta sulla faglia di Paganica, responsabile del terremoto. In particolare, l’inversione congiunta di dati geodetici (GPS e DInSAR) e dati sismologici (Cirella et al., 2009; Yano et al., 2009; Cirella et al., 2012; Gallovič et al., 2015; Del Gaudio et al., 2015) ha consentito di ottenere una descrizione dettagliata del processo di sorgente sismica, in termini di distribuzioni dei parametri cinematici (picco della velocità di dislocazione, velocità del fronte di rottura, durata e direzione della dislocazione) sul piano di faglia.

Figure6NEW

Figura 6. a) Modello della sorgente sismica responsabile del terremoto dell’Aquila, descritto in termini di distribuzioni della dislocazione sul piano di faglia (in alto), durata (centro) e picco (in basso) della velocità di dislocazione sul piano di faglia. b) Confronto tra le forme d’onda osservate (blu) e modellate (rosso). I numeri indicano i valori di picco, in cm/s, osservati su ciascuna stazione e per ogni componente del moto.

La Figura 6a mostra il modello di rottura ottenuto per il terremoto dell’Aquila del 6 aprile 2009, da Cirella et al. (2012). I pannelli in alto, al centro e in basso mostrano, rispettivamente, le distribuzioni di dislocazione, la durata ed il picco della velocità di dislocazione sul piano di faglia. Le isolinee in bianco rappresentano i tempi di rottura e i vettori in nero corrispondono alla direzione di dislocazione. La stella rossa identifica la posizione dell’ipocentro. In Figura 6b si ha il confronto tra i sismogrammi osservati (in blu) e modellati (in rosso) alle stazioni riportate in Figura 5.

Il video mostra l’evoluzione temporale della velocità di dislocazione (in m/s) sul piano di faglia proiettata sulla superficie terrestre. I punti in rosso identificano i siti della città dell’Aquila e dei villaggi di Paganica ed Onna. Si nota come l’intero processo di rottura della faglia duri meno di 10 secondi. Questa durata non va confusa con quello dello scuotimento, che è molto maggiore per il propagarsi delle onde sismiche nella crosta, con riflessioni e rifrazioni multiple, come si vede nel video della propagazione delle onde in Italia centrale.

Questo tipo di indagini fornisce uno strumento essenziale per ottenere una descrizione della sorgente sismica che sia il più possibile rappresentativa dei reali processi sismogenetici, nell’ottica di migliorare la conoscenza dei meccanismi che sono alla base della generazione di un terremoto. Conoscenza indispensabile per la prevenzione e la mitigazione del rischio sismico.

A cura di Daniele Cheloni (INGV-ONT) e Antonella Cirella (INGV-Rm1).


Riferimenti bibliografici

Anzidei M., Boschi E., Cannelli V., Devoti R., Esposito A., Galvani A., Melini D., Pietrantonio G., Riguzzi F., Sepe V., Serpelloni E., (2009). Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys. Res. Lett., 36, doi:10.1029/2009GL039145.

Atzori S., Hunstad I., Chini M., Salvi S., Tolomei C., Bignami C., Stramondo S., Trasatti E., Antonioli A., Boschi E., (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys. Res. Lett., 36, doi:10.1029/GL039293.

Balestra J., Delouis B., (2015). Reassessing the Rupture Process of the 2009 L’Aquila Earthquake (Mw 6.3) on the Paganica Fault and Investigating the Possibility of Coseismic Motion on Secondary Faults. Bull. Seismol. Soc. Am., 105, doi:10.1785/0120140239.

Castaldo R., De Nardis R., DeNovellis V., Ferrarini F., Lanari R., Lavecchia G., Pepe S., Solaro G., Tizzani P., (2018). Coseismic Stress and Strain Field Changes Investigation Through 3D-Finite Element Modeling of DinSAR and GPS Measurements and Geologica/Seismological Data: The L’Aquila (Italy) 2009 Earthquake Case Study. J. Geophys. Res., 123, doi:10.1002/2017JB014453.

Cheloni D., D’Agostino N., D’Anastasio E., Avallone A., Mantenuto S., Giuliani R., Mattone M., Calcaterra S., Gambino P., Dominici D., Radicioni F., Fastellini G., (2010). Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements. Geophys. J. Int., 181, doi:10.1111/j.1365-246X.2010.04584.x.

Cheloni D., Giuliani R., D’Anastasio E., Atzori S., Walters R.J., Bonci L., D’Agostino N., Mattone M., Calcaterra S., Gambino P., Deninno F., Maseroli R., Stefanelli G., (2014). Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) Mw 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics, 622, doi:10.1016/j.tecto.2014.03.009.

Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano and P. De Gori, (2011), The Anatomy of the 2009 L’Aquila Normal Fault System [central Italy] Imaged by High Resolution Foreshock and Aftershock Locations, J. Geophys. Res.,, 116, B12311, doi:10.1029/2011JB008352.

Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009), “Rupture history of the 2009 L’Aquila earthquake from non-linear joint inversion of strong motion and GPS data”, Geophys. Res. Lett. 36, L19304, doi:10.1029/2009GL039795

Cirella A., Piatanesi A., Tinti E. Chini M. and M. Cocco (2012), “Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake”, Geophysical Journal International.190, 607-621, doi:10.1111/j.1365-246X.2012.05505.x.

D’Agostino N., Cheloni D., Fornaro G., Giuliani R., Reale D., (2012). Space-time distribution of afterslip following the 2009 L’Aquila earthquake. J. Geophys. Res., 117, doi:10.1029/2011JB008523.

Del Gaudio S., Causse M., and G. Festa, Broad-band strong motion simulations coupling k-square kinematic source models with empirical Green’s functions: the 2009 L’Aquila earthquake, Geophysical Journal International, Volume 203, Issue 1, October, 2015, Pages 720–736, https://doi.org/10.1093/gji/ggv325

Gallovič, F., Imperatori, W., and Mai, P. M. ( 2015), Effects of three‐dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L’Aquila earthquake, J. Geophys. Res. Solid Earth, 120, 428– 449, doi:10.1002/2014JB011650.

Gualandi A., Serpelloni E., Belardinelli M.E., (2014). Space-time evolution of crustal deformation related to the Mw 6.3, 2009 L’Aquila earthquake (central Italy) from principal component analysis inversion of GPS position time-series. Geophys. J. Int., 197, doi:10.1093/gji/ggt522.

Trasatti E., Kyriakopoulos C., Chini M. (2011). Finite element inversion of DInSAR data from the Mw6.3 L’Aquila earthquake, 2009 (Italy). Geophys. Res. Lett., 38, 8, https://doi.org/10.1029/2011GL046714.

Yano T.E. , Shao G., Liu O. , Ji C., and Ralph J. Archuleta, Coseismic and potential early afterslip distribution of the 2009 Mw 6.3 L’Aquila, Italy earthquake, Geophysical Journal International, Volume 199, Issue 1, October, 2014, Pages 23–40, https://doi.org/10.1093/gji/ggu241

Walters R.J., Elliott J.R., D’Agostino N., England P.C., Hunstad I., Jackson J.A., Parsons B., Phillips R.J., Roberts G., (2009). The 2009 L’Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophys. Res. Lett., 36, doi:10.1029/2009GL039337.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Ricordando il terremoto del 6 aprile 2009: 1) La sequenza sismica e la struttura del sistema di faglie

In questo primo approfondimento sulla sequenza sismica del 2009 in Italia centrale riassumiamo l’evoluzione spazio-temporale della sequenza, ricostruita attraverso l’analisi di circa 60.000 terremoti che sono stati studiati integrando i dati della Rete Sismica Nazionale dell’INGV con quelli delle reti mobili installate subito dopo l’evento del 6 aprile. Con gli stessi dati è stata ricostruita la struttura del sistema di faglie in profondità. Nei prossimi post vedremo come questi dati siano stati utilizzati, insieme a quelli geodetici, accelerometrici e di superficie, per vincolare altre caratteristiche della faglia principale responsabile del terremoto del 2009 e delle altre faglie presenti nella regione. Negli ultimi anni sono stati già affrontati diversi aspetti del terremoto su questo sito, come per esempio in questo articolo e in questo.

Il 6 Aprile 2009 alle ore 03:32 un terremoto di Mw6.1 [1] si verifica nell’area attorno alla città dell’Aquila, dove era in atto un’attività sismica da alcuni mesi, generando una lunga sequenza di repliche. Gran parte della sequenza sismica si verifica sulla faglia responsabile del terremoto principale, la faglia di Paganica, mentre altre faglie minori vengono attivate nei giorni successivi al 6 aprile. A seguito della ridistribuzione degli sforzi causata dall’evento principale, unita ad una probabile migrazione di fluidi presenti nella crosta superiore, l’attività sismica migra inoltre su una faglia posizionata immediatamente a Nord nella zona dei Monti della Laga (figura 1).

Subito dopo l’evento principale, i ricercatori e tecnici dell’INGV, con la successiva collaborazione dell’Università di Grenoble, hanno installato una rete sismica composta da 47 stazioni temporanee che hanno permesso di integrare le informazioni fornite dalla rete permanente (la Rete Sismica Nazionale dell’INGV, RSN) per seguire e monitorare l’evolversi della sequenza e permettere studi successivi di dettaglio.

Figura 1: la figura mostra la distribuzione spazio-temporale dei terremoti avvenuti lungo l’asse della catena appenninica (asse verticale del grafico) a partire dal 1 gennaio al 31 dicembre 2009 (asse orizzontale), cioè circa 3 mesi prima e 9 mesi dopo l’occorrenza dell’evento del 6 aprile 2009. Notiamo la sequenza sismica che inizia a metà gennaio concentrata attorno all’epicentro della scossa del 6 aprile (stella più grande). Le altre stelle indicano i terremoti con magnitudo ML > 5. Come si vede gran parte dei terremoti più forti è avvenuta nella prima settimana a partire dal 6 aprile. Il sistema di faglie attivato, composto da due faglie principali (definite qui faglia di Paganica e faglia dei Monti della Laga) si estende per circa 45 km in direzione NW-SE lungo l’asse dell’Appennino (da Valoroso et al., 2013)

Con la sequenza del 2009, per la prima volta in Italia è stato possibile generare un catalogo ricchissimo di terremoti registrato da stazioni sismiche permanenti e temporanee. Questo catalogo è stato usato per capire a fondo il processo di rilascio sismico e riconoscere le strutture crostali coinvolte nella genesi del terremoto. Dal segnale sismico acquisito in continuo dai sismometri sono stati estratti i segnali di oltre 60.000 terremoti, la cui localizzazione di estrema precisione ha consentito di rilevare il corteo di faglie interessate dai movimenti principali verificatisi durante la sequenza. Il numero così elevato di eventi dipende dal fatto che siamo riusciti a riconoscere e a localizzare con procedure automatiche terremoti molto più piccoli di quelli che normalmente vengono riconosciuti con i metodi standard di analisi; è stato così possibile abbassare la magnitudo di completezza del nostro catalogo di terremoti.

L’architettura delle faglie in profondità delineate dalle repliche (o aftershocks) è stata definita con un’accuratezza della decina di metri, simile quindi a quella osservata dalla geologia di superficie. Questo può consentire di colmare il gap che ancora esiste tra osservazioni geologiche (di superficie) e sismologiche (nel sottosuolo). Infatti per la prima volta sono state osservate, dalla distribuzione della sismicità, le caratteristiche della zona di faglia che rispecchiano le geometrie delle faglie identificate sul terreno. In un prossimo post vedremo come sono organizzate queste ultime e come sono state studiate in questi dieci anni.

 

Figura 2: la figura mostra la distribuzione dei numerosi aftershocks in pianta e in sei sezioni verticali perpendicolari al sistema di faglie, che come è noto si presenta allungato in direzione nordovest-sudest. Se ne apprezza così la geometria, la pendenza (verso sudovest) e l’estensione in profondità (fino a circa 10 km). Notiamo la faglia principale di Paganica-Monte Stabiata (PaF-MSF) e il corteo di altre strutture che si sono attivate durante la sequenza (da Valoroso et al., 2013)

I dati sismologici di dettaglio ci hanno permesso di effettuare una vera e propria radiografia delle faglie nel sottosuolo. La faglia principale, sulla quale si è originato il terremoto del 6 aprile, è chiaramente definita dalla distribuzione degli aftershocks in profondità: questi individuano un piano che si estende per una lunghezza di circa 20 km nella direzione appenninica (nordovest-sudest), inclinato di 50° gradi verso sudovest, e definito dagli aftershocks tra la superficie e 8-9 km di profondità (si veda la sezione verticale 10a in figura 2). La proiezione in superficie di questa faglia coincide con le rotture del terreno mappate in superficie nelle zone di Paganica e Monte Stabiata (faglie PaF e MSF in figura 2). Insieme alla faglia principale sono state osservate alcune altre faglie più piccole che sono state coinvolte nella sequenza. Il complesso corteo di faglie attivate ha permesso di osservare la complessità geologica del sottosuolo in zone di catena “giovani”; questa complessità si traduce anche nella difficoltà di individuare con precisione quali siano le faglie sismogenetiche che si potrebbero attivare in altre zone della catena appenninica.

I numerosi dati sismici di alta qualità hanno permesso inoltre di ricostruire le principali strutture tettoniche del sottosuolo tramite l’utilizzo di tecniche di tomografia sismica. In pratica, i raggi sismici che si propagano dall’ipocentro dei terremoti alle stazioni sismiche “illuminano” la struttura dell’interno della terra lungo il loro tragitto, analogamente a quanto avviene con una TAC per vedere all’interno del corpo umano. Incontrando zone a diversa composizione, e quindi a diversa velocità, le onde sismiche subiscono dei rallentamenti o delle accelerazioni che modificano il loro tempo di percorso nella crosta tra gli ipocentri e le stazioni di rilevamento. Con le tecniche tomografiche siamo quindi in grado di definire la struttura tridimensionale del sottosuolo in termini di velocità delle onde sismiche. L’interpretazione congiunta della sismicità e della struttura profonda ha permesso di capire come la sequenza sismica abbia in parte riattivato numerose strutture geologiche pre-esistenti che si erano generate durante la precedente fase di formazione della catena appenninica. La complessità che abbiamo osservato durante la sequenza del 2009, con l’attivazione di più segmenti di faglie adiacenti, potrebbe derivare da questa eterogeneità del sottosuolo. In generale, nei processi di generazione dei terremoti dell’Appennino, questi segmenti di faglia possono rompersi individualmente oppure in rapida sequenza, originando eventi più o meno forti, come osservato in altre sequenze sismiche (es. Emilia 2012 ed Amatrice-Norcia 2016).

Figura 3: la figura mostra alcune sezioni verticali del modello tomografico (velocità delle onde P) attraverso le due faglie principali posizionate nel settore dei Monti della Laga (faglia dei Monti della Laga, MLGF nelle sezioni 1, 2 e 3) e la faglia di Paganica (faglia PAGf nelle sezioni 4, 5 e 6). Dall’andamento delle velocità in profondità (forma delle anomalie e dei corpi con simile velocità) sono stati tracciati i principali elementi strutturali riconosciuti nel sottosuolo e relativi sia alla tettonica compressiva della catena (piani di thrust, Mot, Tt, GSt, Act) che le faglie estensionali coinvolte nell’attuale fase tettonica distensiva (PAGf, MLGf) (da Buttinelli et al., 2018)

[1] La magnitudo Richter o locale (ML) del terremoto del 6 aprile 2009 alle 3:32 è stata stimata in 5.9 (+/-0.2), mentre le stime della magnitudo momento Mw sono comprese tra 6.1 e 6.3

A cura di Luisa Valoroso e Claudio Chiarabba, INGV-ONT


Riferimenti bibliografici

Buttinelli, M., Pezzo, G., Valoroso, L., De Gori, P., & Chiarabba, C. (2018). Tectonics inversions, fault segmentation, and triggering mechanisms in the central Apennines normal fault system: Insights from high-resolution velocity models. Tectonics, 37, doi:10.1029/2018TC005053

Margheriti, L., et al. (2011). Rapid response seismic networks in Europe: lessons learnt from the L’Aquila earthquake emergency. Ann. Geophys., 54, 4, doi: 10.4401/ag-4953

Valoroso L., L. Chiaraluce, D. Piccinini, R. Di Stefano, D. Schaff, and F. Waldhauser (2013), Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study, J. Geophys. Res., 118, doi:10.1029/2012JB009927

Valoroso L., L. Chiaraluce, C. Collettini, (2014), Earthquakes and fault zone structure. Geology, 118, doi:10.1029/2012JB009927


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

 

 

Terremoto in Iran – magnitudo 5.6 (28/11/2013)

Il 28 novembre alle 13:51 UTC (le 14:51 in Italia) un terremoto di magnitudo 5.6 ha colpito l’Iran meridionale, circa 14 km a nordest della città di Borazjan e a 60 km a nord dell’unica centrale nucleare del paese, quella di Bushehr, sulla costa. L’ipocentro è stato localizzato a 14 km di profondità. Dalle prime ricostruzioni sembra che ci siano state almeno 7 vittime, alcune decine di feriti ma nessun danno alla centrale, secondo la televisione di stato. Un bilancio piuttosto pesante per un terremoto non molto forte. Probabilmente ha pesato la cattiva qualità delle costruzioni.

Eicentro del terremoto in Iran nel contesto della zona di deformazione del Mediterraneo e del Medio Oriente

Eicentro del terremoto in Iran nel contesto della zona di deformazione del Mediterraneo e del Medio Oriente (da USGS). La linea rossa che corre da sudest a nordovest nella regione iraniana rappresenta un importante limite di placca

Nel mese di aprile un terremoto di magnitudo 6.1 aveva causato la morte di almeno 37 persone e il ferimento di alcune centinaia in una città vicino a Bushehr. Anche in quel caso la centrale nucleare non riportò danni. Altri terremoti importanti (M>6) sono avvenuti negli ultimi decenni in Iran. Tra questi il più grave fu quello di Bam nel 2003 (M6.6) che causò oltre 26000 vittime.

L’Iran si trova lungo un importante margine tettonico, in una zona di compressione crostale causata della spinta della placca arabica che si muove verso nord rispetto a quella eurasiatica. Oltre il 90% del paese è attraversato da faglie attive Leggi il resto di questa voce

100.000 terremoti in Iside!

iside Il 26 aprile 2013 il nostro database Iside ha toccato i centomila terremoti. Iside aveva iniziato ad archiviare e distribuire i dati della sismicità in Italia il 16 aprile 2005, quando avevamo avviato il nuovo sistema di analisi dei dati sismici. Da allora, i nostri sismologi, tecnologi e tecnici hanno analizzato alcuni milioni di sismogrammi, Leggi il resto di questa voce

%d blogger hanno fatto clic su Mi Piace per questo: