Archivi Blog

I terremoti nella STORIA: Nel 1117 il più forte terremoto dell’area padana colpiva Verona e la pianura centro-occidentale

Novecento anni fa, nel 1117, si è verificato il più forte terremoto dell’area padana di cui si abbia notizia. Nonostante siano trascorsi ben nove secoli e il terremoto si sia verificato in un’area caratterizzata all’epoca da sporadici nuclei abitati situati tra zone paludose e foreste, disponiamo di un gran numero di informazioni su questo evento. Grazie anche alla fitta rete di monasteri benedettini presenti nel XII secolo, esiste infatti un’ampia tipologia di fonti coeve, quali annali monastici, documenti di varia tipologia ed epigrafi, che ci forniscono differenziate e puntuali informazioni su questo terremoto.

Lunetta e architrave del portale dell’Abbazia di Nonantola (Modena) con l’iscrizione relativa al rifacimento dell’edificio avvenuto in seguito al terremoto del 1117.

Si trattò di un evento assai importante per la società del tempo, contraddistinta da un contesto di generale sviluppo economico, infatti le città in quegli anni attraversavano una fase di ripresa economica e demografica e venivano edificati edifici pubblici e chiese. Il terremoto del 1117 si impresse a lungo nella memoria delle popolazioni colpite divenendo un elemento di riferimento cronologico per datare altri avvenimenti, come testimoniato da numerosi documenti successivi.

Il terremoto ebbe una grande fama in tutta l’Europa medievale ed è ricordato in quasi tutti gli annali monastici europei del tempo anche perchè molto probabilmente si è trattato di un evento multiplo (Guidoboni e Comastri, 2005; Guidoboni et al., 2007). L’ampia e accurata ricerca cronachistica e archivistica svolta ha solo parzialmente fatto luce sulla grande complessità di questo evento; da alcuni ricercatori sono state individuate tre diverse scosse: la prima avvenuta nella notte tra il 2 e il 3 gennaio, la seconda, la più forte, avvenuta nel primo pomeriggio (alle ore 15:15 GMT) del 3 gennaio in concomitanza con una terza scossa di minore entità (Guidoboni et al., 2005). La prima scossa si sarebbe verificata nella Germania meridionale causando danneggiamenti in particolare nell’area di Augusta e Costanza. La seconda scossa ha duramente colpito la Pianura Padana, ed è stata caratterizzata da un’area di danneggiamento molto ampia, comprendente il Veneto, la Lombardia e l’Emilia. Il terzo evento avrebbe interessato l’Alta Toscana, causando il crollo di torri, edifici e campanili nel territorio di Pisa e Lucca (Guidoboni et al., 2005; Rovida et al., 2016).

Epicentri attribuiti ai tre eventi del gennaio 1117 da Guidoboni et al., 2005.

L’evento più forte della sequenza si è quindi verificato nel primo pomeriggio del 3 gennaio 1117 e ha duramente colpito l’area della Pianura Padana veronese, causando danni da Piacenza sino alla costa adriatica. Parte di questi danni sono stati identificati per mezzo di un’estesa ricerca su restauri e ricostruzioni, in edilizia ecclesiastica, successivi al 1117.

Chiesa di San Pietro a San Pietro in Valle (Verona). Le differenti tipologie di muratura testimoniano il periodo di costruzione. Il transetto e la base della torre (1) sono databili all’alto Medioevo; la sommità della torre (2) invece risale al XII secolo, molto probabilmente è stata ricostruita dopo il terremoto del 1117 (Guidoboni e Comastri, 2005).

I dati di intensità macrosismica mostrano che l’area dei maggiori danneggiamenti è localizzata nella valle del Fiume Adige, a sud di Verona (Guidoboni et al., 2005). Nel Catalogo Parametrico dei Terremoti Italiani la magnitudo stimata di questo evento è pari a 6.5 (Rovida et al., 2016).

Valori di intensità del terremoto Veronese del 3 gennaio 1117 (Guidoboni et al, 2007; Rovida et al., 2016).

Diversi elementi rendono complessa l’individuazione geologica della/delle faglie responsabili dell’evento in questione, vediamo solo i principali:

  • le intensità macrosismiche più elevate sono distribuite su di una porzione molto ampia di pianura;
  • non possiamo escludere che il forte evento denominato Veronese del 3 gennaio sia stato in realtà una sequenza di più scosse molto ravvicinate nel tempo;
  • l’area epicentrale è sede oggi di pochi terremoti strumentali di bassa magnitudo;
  • l’epicentro macrosismico è localizzato in un’area pianeggiante ritenuta usualmente “indeformata” dal punto di vista sismotettonico;
  • le faglie della Pianura Padana non arrivano a tagliare la superficie terrestre ma si fermano in profondità, sono infatti definite faglie cieche. Pertanto possono essere rilevate solo grazie allo studio di prospezioni geofisiche o attraverso altri metodi indiretti.

In un precedente articolo pubblicato su questo BLOG abbiamo descritto il complesso e articolato paesaggio della Pianura Padana, sia quello visibile in superficie sia quello sepolto sotto i sedimenti di origine marina e fluviale. Le strutture compressive, o thrust, delle Alpi Meridionali, a nord, e dell’Appennino Settentrionale, a sud, proseguono al di sotto dei sedimenti della Pianura Padana e sono attualmente in avvicinamento, come mostrano i dati geodetici satellitari. In profondità questo raccorciamento si trasforma in uno sforzo di caricamento di faglie di tipo compressivo localizzate al piede delle Alpi e al piede dell’Appennino. Identificare la faglia responsabile del terremoto del 1117 richiede che si prenda in dovuta considerazione sia l’assetto delle due catene montuose sia l’assetto paleogeografico preesistente. L’avvicinamento delle due catene è infatti fortemente condizionato dalla presenza di un contesto geologico “ereditato”. Quando affermiamo che l’area epicentrale del terremoto del 1117 è localizzata in una zona ritenuta “indeformata”, ci riferiamo a quella porzione di territorio che non è ancora stata apparentemente raggiunta, in profondità, dai thrust delle due catene montuose in avvicinamento.

A causa di queste oggettive complessità sono state ipotizzate negli anni numerose – e  poco vincolate – strutture sismogenetiche responsabili del forte terremoto del 3 gennaio 1117:

  • fronte alpino e struttura delle Giudicarie, attivazione contemporanea del thrust dei M.ti Lessini (indicato come 1a nella figura sottostante) e del thrust del M.te Baldo (indicato come 1b; Galadini e Galli, 2001);
  • fronte alpino, thrust Thiene-Bassano (indicato come 2; Galadini et al., 2001; Galadini et al., 2005);
  • struttura appenninica sepolta, thrust di Piadena (indicato come 3; Galli, 2005);
  • struttura ereditata Mesozoica riattivata nell’attuale regime tettonico compressivo (indicato come 4; DISS Working Group, 2010; Vannoli et al., 2015);
  • strutture ereditate Mesozoiche, le faglie trascorrenti destre di Nogara (indicato come 5a in figura) e di S. Ambrogio (indicato come 5b; Scardia et al., 2015);
  • struttura basata su evidenze di geomorfologia tettonica. Lungo i corsi dei fiumi Mincio e Adige sono state identificate diverse “anomalie di drenaggio” compatibili con il sollevamento della superficie topografica causato dal movimento in profondità della faglia (indicato come 6 in figura; Burrato et al., 2003; DISS Working Group, 2015).

Sorgenti sismiche responsabili del terremoto Veronese del 3 gennaio 1117 proposte nella letteratura scientifica nel corso degli anni (rappresentate in rosso, vedere il testo sopra per la spiegazione). Da notare come negli articoli stessi venga sottolineato come queste sorgenti siano delle mere proposte. In giallo l’epicentro macrosismico dell’evento (Guidoboni et al, 2007; Rovida et al., 2016).

La presenza in letteratura di tante differenti ipotesi conferma come l’individuazione della sorgente responsabile del forte terremoto del 1117 sia ancora oggi un problema aperto.

L’Istituto Nazionale di Geofisica e Vulcanologia con l’Istituto Veneto di Scienze, Lettere ed Arti e il Centro euro-mediterraneo di documentazione Eventi Estremi e Disastri hanno organizzato, nel gennaio scorso, una giornata di studio per fare il punto delle conoscenze su questo terremoto e sul suo impatto, alla luce delle conoscenze scientifiche attuali. Dal sito web del Convegno è possibile visualizzare il programma, scaricare le presentazioni dei diversi ricercatori invitati e vedere i video delle presentazioni.

a cura di Paola Vannoli (INGV, Roma 1)


Bibliografia

Burrato P., Ciucci F., Valensise G. (2003). An inventory of river anomalies in the Po Plain, Northern Italy: evidence for active blind thrust faulting, Ann. Geophys. 5, 865-882, doi: 10.4401/ag-3459.

DISS Working Group (2010). Database of Individual Seismogenic Sources (DISS), Version 3.1.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas, http://diss.rm.ingv.it/diss/, © INGV 2010, Istituto Nazionale di Geofisica e Vulcanologia, doi: 10.6092/INGV.IT-DISS3.1.1.

DISS Working Group (2015). Database of Individual Seismogenic Sources (DISS), Version 3.2.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas, http://diss.rm.ingv.it/diss/, © INGV 2015, Istituto Nazionale di Geofisica e Vulcanologia, doi: 10.6092/INGV.IT-DISS3.2.0.

Galadini F., Galli P. (2001). Archaeoseismology in Italy: case studies and implications on long-term seismicity, J. of Earthquake Engineering, 5, 35-68.

Galadini F., Galli P., Molin D., Ciurletti G., (2001). Searching for the source of the 1117 earthquake in northern Italy: a multidisciplinary approach, T. Glade et al. (eds.), The use of historical data in natural hazard assessments, Kluwer Academic Publisher, 3-27.

Galadini F., Poli M.E., Zanferrari A. (2005). Seismogenic sources potentially responsible for earthquakes with M C 6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy). Geophys. J. Int. 161, 739-762, doi: 10.1111/j.1365-246X.2005.02571.x.

Galli P. (2005). I terremoti del gennaio 1117. Ipotesi di un epicentro nel cremonese, Il Quaternario (It. J. Quat. Sci.) 18, 2, 87-100.

Guidoboni E., Comastri A. (2005). Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century. Istituto Nazionale di Geofisica e Vulcanologia-Storia, Geofisica, Ambiente srl, Roma-Bologna.

Guidoboni E., Comastri A., Boschi E. (2005). The ‘‘exceptional’’ earthquake of 3 January 1117 in the Verona area (northern Italy): a critical time review and detection of two lost earthquakes (lower Germany and Tuscany), J. Geophys. Res. 110, B12309, doi: 10.1029/2005JB003683.

Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Valensise G. (2007). CFTI4Med, Catalogue of Strong Earthquakes in Italy (461 B.C.-1997) and Mediterranean Area (760 B.C.-1500). INGV-SGA. Available from http://storing.ingv.it/cfti4med/.

Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (eds) (2016). CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-CPTI15.

Vannoli P., Burrato P., Valensise  G. (2015). The seismotectonics of the Po Plain (northern Italy):tectonic diversity in a blind faulting domain. Pure and Applied Geophysics, 172, 5, 1105-1142, doi: 10.1007/s00024-014-0873-0.

Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Caviaga, 15 maggio 1951: davvero un terremoto indotto?

La notte tra il 15 e il 16 maggio 1951 due terremoti di magnitudo rispettivamente 5.4 e 4.5, localizzati nei pressi di Caviaga, una frazione del comune di Cavenago d’Adda in provincia di Lodi, furono avvertiti in una vasta area dell’Italia settentrionale, in particolare in area lombarda e padana. Gli effetti furono complessivamente modesti (caduta di camini, lesioni agli intonaci, ecc.), ma diffusi in una zona abbastanza vasta, da Cremona a Pavia, da Monza a Piacenza e in numerose altre località. Qualche danno sporadico si ebbe anche a Milano, Brescia e Mantova. I danni più diffusi si ebbero nell’area urbana di Cremona, come documenta una corrispondenza pubblicata da un giornale locale:

“[Cremona] […] Moltissime case, specialmente quelle di vecchia costruzione, hanno subito lesioni più o meno gravi. Non si contano i comignoli crollati: ieri mattina all’alba non vi era strada ove non vi fossero qua e là macerie di fumaioli abbattuti o di pezzi di cornicione crollati. In mattinata, i vigili del fuoco hanno ricevuto numerose chiamate per demolire comignoli così gravemente lesionati da minacciare rovina. Anche ingegneri e capomastri hanno ricevuto inviti a centinaia per constatare se le lesioni apparse nei muri di tante case potessero o meno costituire un pericolo per la solidità dell’edificio” [La Provincia [Cremona], 1951.05.17, p. 2]”

Fig. 1 – Titoli di corrispondenze giornalistiche nel quotidiano locale cremonese “La Provincia” del 16 maggio 1951 e dell’edizione nazionale dell’Unità del 16 maggio.

Titoli di corrispondenze giornalistiche nel quotidiano locale cremonese “La Provincia” del 16 maggio 1951 e dell’edizione nazionale dell’Unità del 16 maggio.

L’ampia area di avvertimento del terremoto e il suo carattere inusuale in area lombarda e padana produssero una immediata attenzione di quotidiani e settimanali, come attestato da alcuni titoli molto enfatici, pur se l’attenzione prestata a questo evento durò relativamente poco per la scarsa consistenza degli effetti materiali.

Fra i testi di un certo interesse culturale, vale la pena segnalare una lunga e sensatissima intervista al prof. Orlando Vecchia, docente di geologia presso il Politecnico di Milano, pubblicata dal settimanale “Oggi”.

Fig. 2 – Frontespizio del settimanale “Oggi” del 24 maggio 1951 con il richiamo all’articolo sui terremoti della Pianura Padana.

Frontespizio del settimanale “Oggi” del 24 maggio 1951 con il richiamo all’articolo sui terremoti della Pianura Padana.

Alcune considerazioni del prof. Vecchia sono di estrema attualità: la rarità ma non eccezionalità dell’evento, la non prevedibilità dei terremoti, la demolizione sistematica delle convinzioni ingenue presenti nel senso comune (terremoti che avvengono “quasi sempre di notte”, correlati ad eventi meteorologici o astronomici, gli animali che manifestano “segni premonitori”), oltre ad una considerazione molto acuta sulla profondità elevata di queste scosse.

Figura 3 – Il titolo dell’intervista al prof. Orlando Vecchia pubblicata dal settimanale “Oggi” del 24 maggio 1951.

Titolo dell’intervista al prof. Orlando Vecchia pubblicata dal settimanale “Oggi” del 24 maggio 1951.

Questi eventi vengono oggi ricordati con particolare interesse perché all’epoca la loro origine venne correlata alle attività di estrazione di gas naturale in corso nell’area.

Caloi et al. (1956) determinarono l’ipocentro ad una profondità di 5 km (figura 4) suggerendo l’ipotesi, ribadita anche successivamente (Caloi, 1970), di un’origine legata all’attività estrattiva iniziata nell’area epicentrale a partire dal 1944 (AGIP Mineraria, 1959a).

Sulla base di tale ipotesi e in assenza di successive discussioni o revisioni, questi terremoti sono entrati a far parte, acriticamente, delle liste degli eventi indotti o innescati dall’attività antropica compilate da vari autori, sia a scala nazionale (ISPRA, 2014; Styles, et al., 2014) che internazionale (Grasso, 1992; Guha, 2000; Klose, 2013; Maury, et al., 1992; Suckale, 2009). È importante notare che se tale ipotesi venisse confermata, il primo dei due eventi rappresenterebbe il più forte terremoto innescato in Europa e uno dei più forti al mondo.

La discussione formulata da Caloi et al. (1956) era necessariamente basata sulle conoscenze sismologiche e geologiche del tempo. Le informazioni sulla storia sismica dell’area erano limitate a quanto raccolto dalla compilazione sismologica di Baratta (1901) dove, nella sezione denominata “Distribuzione topografica dei terremoti italiani”, si legge che “nella cartina sulla sismicità dell’Italia settentrionale […] Lodi e il Lodigiano non figurano in nessuna area sismica […]”, ripreso da Caloi et al. (1956).

La conoscenza dell’assetto sismotettonico della Pianura Padana, nonché della velocità di propagazione delle onde sismiche, era generica e la capacità di registrare eventi di bassa magnitudo era esigua a causa delle limitazioni tecniche e della scarsità di stazioni sul territorio.

Partendo da quello stato delle conoscenze, Caloi et al. (1956) poterono affermare che “la zona che ci interessa […] è stata sempre considerata asismica; e comunque non ci risulta che, geologicamente, sia da considerarsi in fase di sollevamento (p.93)”, che “in corrispondenza della Val Padana, la crosta terrestre consiste quindi di tre strati sovrapposti […]. Sopra lo strato del granito, si trova una stratificazione di sedimenti, generalmente diffusa in tutta Europa (p.103)” e concludere che “per quanto riguarda la natura della scossa […] la singolarità del meccanismo […] il fatto che la zona interessata è notoriamente asismica e che in essa, da parecchi anni, è in corso un abbondante estrazione di gas metano, ha fatto ritenere non del tutto improbabile che le scosse in esame siano comunque collegate all’enorme decompressione in atto negli strati profondi […] (p.104)”.

Dopo 60 anni, notevoli passi in avanti sono stati fatti nel campo della sismologia, in particolare nelle tecniche di localizzazione ipocentrale, così come nella conoscenza della storia sismica italiana, del suo assetto sismotettonico e della struttura crostale regionale (figura 4). È quindi possibile oggi analizzare i dati relativi a questi eventi alla luce delle nuove conoscenze acquisite.

Dal punto di vista tettonico, l’area epicentrale di Caviaga ricade in una zona particolarmente interessante, dove il fronte di compressione, legato all’evoluzione e al sollevamento dell’Appennino settentrionale, incontra il fronte di compressione più esterno e meridionale legato all’evoluzione della catena alpina (figura 4). Misure GPS (Global Position System) dei tassi di deformazione di quest’area evidenziano un movimento verso nord, rispetto al continente Euroasiatico, di 0.5–1 mm/anno (Serpelloni, et al., 2005).

Figura 4: Sismicità strumentale degli ultimi 30 anni rappresentata con stelline di colore variabile con la profondità (vedi tabella 1). In nero sono tracciati i lineamenti tettonici attivi al contatto tra fronte alpino e appenninico. Il cerchio rosso rappresenta la localizzazione epicentrale del terremoto più forte (mainshock) del 15.05.1951 tratta da Caloi et al. (1956).

Figura 4: Sismicità strumentale degli ultimi 30 anni rappresentata con stelline di colore variabile con la profondità (vedi tabella 1). In nero sono tracciati i lineamenti tettonici attivi al contatto tra fronte alpino e appenninico. Il cerchio rosso rappresenta la localizzazione epicentrale del terremoto più forte (mainshock) del 15.05.1951 tratta da Caloi et al. (1956).

La consultazione dei bollettini (ISIDe Working Group, 2010) relativi alla sismicità registrata negli ultimi 30 anni in un raggio di 20 km intorno a Lodi, mostra almeno 21 eventi con una profondità ipocentrale maggiore di 10 km (figura 4 e tabella 1).

Tabella 1 – Localizzazione degli eventi registrati negli ultimi 30 anni con profondità ipocentrali > 10 km in un raggio di 20 km intorno a Lodi (ISIDe Working Group, 2010).

Tabella 1 – Localizzazione degli eventi registrati negli ultimi 30 anni con profondità ipocentrali > 10 km in un raggio di 20 km intorno a Lodi (ISIDe Working Group, 2010).

Quanto alle conoscenze sulla storia sismica dell’area, esse sono oggi più avanzate rispetto a quelle sintetizzate dal Baratta (1901). La mappa dei terremoti storici (figura 5; Rovida et al., 2011) evidenzia che l’area interessata dai terremoti del 1951 non può essere considerata storicamente asismica. In particolare, l’evento del 1786 risulta avere una localizzazione molto prossima a quella calcolata per l’evento del 1951. I dati disponibili evidenziano un’area di effetti molto vasta che suggerisce un ipocentro profondo, come nel caso di altri eventi accaduti in passato in altre località nella Pianura Padana (1796, 1909 e 1983, Vannoli et al., 2014).

Può dunque essere considerata vera l’ipotesi suggerita da Caloi et al. (1956) che i terremoti del 15 e 16 maggio 1951 siano stati indotti o innescati dall’attività estrattiva del giacimento metanifero di Caviaga o del vicino giacimento di Ripalta?

Alcuni ricercatori dell’INGV hanno cercato di rispondere a questa domanda e le loro conclusioni sono state pubblicate nella rivista internazionale Seismological Research Letters (Caciagli, et al., 2015). Nel 1951 nell’area epicentrale colpita dagli eventi erano presenti due campi di estrazione metanifera: il giacimento di Caviaga e il giacimento di Ripalta. Alla fine del 1951, dal giacimento di Caviaga erano stati estratti 701 milioni di metri cubi (mc) di metano, 1824 mc di gasolina naturale e 1676 mc di acqua (AGIP Mineraria, 1959a).

Il giacimento del campo di estrazione di Caviaga è superficiale: il gas è estratto a profondità di 1300-1700 m da depositi prevalentemente sabbiosi del Pliocene con spessori massimi dell’ordine di 200 metri. Dal vicino giacimento di Ripalta, 10 km a nord-est di Caviaga, alla fine del 1951 erano stati estratti 312 milioni di mc di metano, 38 mc di gasolina naturale e 47 mc di acqua (AGIP Mineraria, 1959b). In nessuno di questi campi di estrazione furono mai usati pozzi per l’iniezione di fluidi di lavorazione nel sottosuolo.

Caciagli et al. (2015) hanno ricalcolato la localizzazione ipocentrale degli eventi utilizzando algoritmi e modelli di velocità di propagazione moderni, partendo dalle registrazioni dei tempi di arrivo pubblicate sul Bollettino del maggio 1951 dell’International Seismological Summary (ISC, 2011; ISS, 1951).

Figura 5: Le stelle piccole rappresentano la sismicità strumentale degli ultimi 30 anni con colori variabili secondo la profondità. I rombi gialli rappresentano i pozzi estrattivi dei campi di Caviaga e Ripalta, attivi all’epoca degli eventi. I quadrati rossi indicano la sismicità storica (CPTI11). Le stelle grandi fucsia, celeste e blu rappresentano rispettivamente le localizzazioni dei terremoti del 15 maggio 1951 di Caloi et al (1956) e del 15 e 16 maggio 1951 secondo Caciagli et al (2015).

Figura 5: Le stelle piccole rappresentano la sismicità strumentale degli ultimi 30 anni con colori variabili secondo la profondità. I rombi gialli rappresentano i pozzi estrattivi dei campi di Caviaga e Ripalta, attivi all’epoca degli eventi. I quadrati rossi indicano la sismicità storica (CPTI11). Le stelle grandi fucsia, celeste e blu rappresentano rispettivamente le localizzazioni dei terremoti del 15 maggio 1951 di Caloi et al (1956) e del 15 e 16 maggio 1951 secondo Caciagli et al (2015).

Gli epicentri ottenuti (figura 5 e tabella 2) spostano la localizzazione dei due eventi a nord di Lodi, ad una distanza di circa 20 km da entrambi i giacimenti di Caviaga e Ripalta. Gli ipocentri inoltre risultano essere ad una profondità compresa tra i 34 km e i 32 km per l’evento principale (mainshock) del 15 maggio e ad una profondità compresa tra i 20 km e i 13 km per quello del 16 maggio.

Per rispondere alla domanda legata all’eventuale natura antropica di questi eventi, Caciagli et al. (2015) hanno inoltre effettuato il calcolo della variazione di stress indotta dall’attività estrattiva effettuata fino al 1951 nei rispettivi giacimenti.

Tabella 2 – Parametri ipocentrali dei terremoti del 15 e 16 maggio 1951 ricalcolati usando i programmi di localizzazione Hypoinverse e Hyposat. (da Caciagli et al. 2015 modificata).

Tabella 2 – Parametri ipocentrali dei terremoti del 15 e 16 maggio 1951 ricalcolati usando i programmi di localizzazione Hypoinverse e Hyposat. (da Caciagli et al. 2015 modificata).

Infatti, una fonte di potenziale cambiamento dello stress è lo squilibrio causato dalla rimozione della massa di metano estratta dal giacimento. È possibile calcolare la variazione di stress derivante dallo sfruttamento del campo di Caviaga considerando il volume (V) di gas estratto fino al 1951 (V ~ 700 Mmc, densità del metano 0,701 kg/mc; Dami, 1952; AGIP Mineraria, 1959a). Il volume totale di acqua e benzina estratto è così basso da risultare ininfluente in termini di massa.

La rimozione della massa di metano corrisponde ad una variazione di sforzo di ~1,7 Pa all’ipocentro. La stessa stima, ripetuta per il volume di gas estratto al giacimento Ripalta, dà una variazione di ~0,75 Pa all’ipocentro. Anche considerando un effetto cumulativo dei cambiamenti di stress a causa dello sfruttamento dei due giacimenti, si ottiene un valore ben al di sotto della soglia di 10 kPa che è generalmente considerata necessaria per l’attivazione di sismicità (Stein, 1999; Stein and Lisowski, 1983).

Altre fonti di perturbazione dello stress includono variazioni nella pressione di poro e negli effetti poro-elastici. Tuttavia diversi strati altamente impermeabili nella sequenza stratigrafica definiscono le trappole strutturali in cui sono confinati i serbatoi. Inoltre la parte di crosta in esame è caratterizzata da eterogeneità estreme ed importanti discontinuità verticali e orizzontali al contatto tra due domini tettonici (figura 4). Di conseguenza, l’ipotesi di una continuità idraulica eventualmente responsabile della propagazione fino a 35 km di effetti poro-elastici negli strati della crosta, risulta piuttosto improbabile.

In conclusione, alla luce delle nuove conoscenze, le argomentazioni di Caloi et al. a sostegno di un’origine indotta o innescata non sembrano verificate e non soddisfano i criteri stabiliti dalla letteratura internazionale (Davis and Frohlich, 1993) per discriminare la sismicità indotta/innescata dalla sismicità naturale.

In effetti, il territorio colpito dai terremoti del 15 e 16 maggio 1951 non risulta asismico poiché già interessato in passato da attività sismica, l’area è coinvolta nei processi geologici relativi all’evoluzione dell’arco appenninico settentrionale e di quello alpino meridionale, la nuova localizzazione degli eventi risulta spostata verso nord di oltre 20 km, gli ipocentri sono profondi circa 35 km, l’attività sismica recente riporta almeno 21 eventi con caratteristiche ipocentrali comparabili (profondità >10 km) in un raggio di 20 km intorno a Lodi.

Poiché le condizioni per le quali questi terremoti erano stati inseriti nelle liste internazionali degli eventi indotti sono venute a cadere, gli autori sono propensi a sostenerne un’origine naturale.

a cura di Marco Caciagli, Romano Camassi, Stefania Danesi, Silvia Pondrelli e Simone Salimbeni, INGV – Bologna.


Bibliografia

AGIP Mineraria (1959a). Campo di Caviaga, in Atti del Convegno: I giacimenti gassiferi dell’Europa occidentale, Milano (Italy) 30 September–5 October 1957 Accademia Nazionale dei Lincei & ENI idrocarburi (Editor), Acc. Naz. Lincei, Milano (Italy), 244–251. (Italian)

AGIP Mineraria (1959b). Campo di Ripalta, in Atti del Convegno: I giacimenti gassiferi dell’Europa occidentale, Milano (Italia), 30 September–5 October 1957 Acc. Naz. Lincei & ENI idrocarburi (Editor), Acc. Naz. Lincei, Milano, 143–157. (Italian)

Baratta, M. (1901). I terremoti d’Italia; saggio di storia geografia e bibliografia sismica italiana, Arnaldo Forni Ed., Torino, 950. (Italian)

Caciagli, M., R. Camassi, S. Danesi, S. Pondrelli, and S. Salimbeni (2015). Can We Consider the 1951 Caviaga (Northern Italy) Earthquakes as Noninduced Events?, Seismol. Res. Lett. 86 1335-1344.

Caloi, P. (1970). How nature reacts on human intervention: responsibilities of those who cause and who interpret such reactions. Annali di Geofisica 23 283-305.

Caloi, P., M. de Panfilis, D. di Filippo, L. Marcelli, and M. C. Spadea (1956). Terremoti della Val Padana del 15–16 maggio 1951. Annali di Geofisica 9 63-105.

Dami, C. (1952). L’economia degli idrocarburi nazionali (Parte 1), Moneta e credito 5 306–329. (Italian)

Davis, S.D., and Frohlich, C. (1993). Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seism. Res. Lett. 64 207- 224.

Grasso, J. R. (1992). Mechanics of seismic instabilities induced by the recovery of hydrocarbons. Pure Appl. Geophys. 139 507-534.

Guha, S. (2000). Induced Earthquakes, Kluwer Academic Publishers, Dordrecht (Netherlands), 314.

ISC (2011). International Seismological Centre, On-line Bulletin. I. S. Centre (Editor), International Seismological Centre, Thatcham, United Kingdom.

ISIDe Working Group (2010). ISIDe, Italian Seismological Instrumental and parametric Data-base, On-Line Database http://iside.rm.ingv.it

ISPRA (2014). Rapporto sullo stato delle conoscenze riguardo alle possibili relazioni tra attività antropiche e sismicità indotta/innescata in Italia, ISPRA, Roma, 74.

ISS (1951). International Seismological Summary 1951 April, May, June, in United Nations Educational, Scientific and Cultural Organisation (UNESCO) (Editor), formerly the Bulletin of the British Association Seismology Committee 249 pp.

Klose, C. D. (2013). Mechanical and statistical evidence of the causality of human-made mass shifts on the Earth’s upper crust and the occurrence of earthquakes, J Seismol 17 109-135.

Maury, V. M. R., J.-R. Grasso and G. Wittlinger (1992). Monitoring of subsidence and induced seismicity in the lacq gas field (France): the consequences on gas production and field operation. Eng. Geol. 32 123-135.

Rovida, A., R. Camassi, P. Gasperini, e M. Stucchi (2011). CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani, INGV, Milano – Bologna.

Serpelloni, E., M. Anzidei, P. Baldi, G. Casula, and A. Galvani (2005). Crustal velocity and strain-rate fields in Italy and surrounding regions: New results from the analysis of permanent and nonpermanent GPS networks, Geophys. J. Int. 161 861-880.

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence, Nature 402 605-609.

Stein, R. S., and M. Lisowski (1983). The 1979 Homestead Valley earthquake sequence California; control of aftershocks and postseismic deformation, J. Geophys. Res. Solid Earth 88 6477-6490.

Styles, P., P. Gasparini, E. Huenges, P. Scandone, S. Lasocki, and F. Terlizzese (2014). Report on the Hydrocarbon Exploration and Seismicity in Emilia Region, International Commission on Hydrocarbon Exploration and Seismicity in the Emilia Region (ICHESE), 213.

Suckale, J. (2009). Induced seismicity in hydrocarbon fields, in Advances in Geophysics R. Dmowska (Editor), Academic Press, New York (USA), 55-106.

Vannoli, P., P. Burrato, and G. Valensise (2014). The seismotectonics of the Po Plain (northern Italy): Tectonic diversity in a blind faulting domain, Pure Appl. Geophys. 171 1237–1250.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

La GEOLOGIA dei terremoti: Faglie sismogenetiche cieche in Pianura Padana

Un recente studio pubblicato su Pure and Applied Geophysics censisce e classifica le faglie sismogenetiche cieche in Pianura Padana, riorganizzando le conoscenze esistenti alla luce dei terremoti emiliani del maggio 2012.

Il “paesaggio geologico” sepolto della Pianura Padana è molto articolato e complesso e possiamo immaginarlo costituito da vere e proprie montagne ammantate da gran di quantità di sedimenti di origine marina e fluviale. Questi sedimenti hanno spessori molto variabili, tra diverse migliaia di metri e poco più di 100 metri, e nascondono alla semplice osservazione le strutture tettoniche sottostanti, che possono però essere rilevate grazie alle numerose prospezioni geofisiche rese disponibili dall’esplorazione petrolifera a partire dal secondo dopoguerra.

La Pianura Padana rappresenta dunque un unicum geologico perché i suoi sedimenti nascondono la zona di contatto tra i thrust (termine per indicare le faglie con movimento di tipo inverso) delle Alpi Meridionali, a nord, e quelli dell’Appennino Settentrionale, a sud (Figura 1). In pratica entrambe queste catene montuose, che noi conosciamo e vediamo nella loro parte esposta, proseguono con delle porzioni sepolte che arrivano quasi a toccarsi nel sottosuolo padano.

Figura 1: Mappa strutturale semplificata della Pianura Padana. Linee nere: principali elementi tettonici; linee bianche: faglie ereditate; SAMF: fronte montuoso delle Alpi Meridionali; SAOA: arco esterno delle Alpi Meridionali; GS: Sistema delle Giudicarie; SVL: Schio-Vicenza; NAOA: arco esterno dell’Appennino Settentrionale; PTF: fronte pedeappenninico; MA: arco del Monferrato; EA: arco Emiliano; FRA: arco Ferrarese-Romagnolo.

Figura 1: Mappa strutturale semplificata della Pianura Padana. Linee nere: principali elementi tettonici; linee bianche: faglie ereditate; SAMF: fronte montuoso delle Alpi Meridionali; SAOA: arco esterno delle Alpi Meridionali; GS: Sistema delle Giudicarie; SVL: Schio-Vicenza; NAOA: arco esterno dell’Appennino Settentrionale; PTF: fronte pedeappenninico; MA: arco del Monferrato; EA: arco Emiliano; FRA: arco Ferrarese-Romagnolo.

Attraverso alcuni milioni di anni il progressivo moto di avvicinamento della Placca Africana  e della Placca Europea ha determinato prima la nascita delle Alpi e degli Appennini, attraverso il progressivo corrugamento di migliaia di metri di sedimenti originariamente deposti in un antico oceano noto come Tetide, sviluppatosi a partire da circa 250 milioni di anni fa tra il Permiano ed il Triassico inferiore; poi ne ha sollevato le porzioni assiali creando il paesaggio montuoso che oggi conosciamo, secondo un meccanismo ancora attivo alla velocità di 1-3 metri per millennio. L’avvicinamento di Alpi e Appennini secondo una direttrice circa N-S, e quindi il raccorciamento della Pianura Padana, è tuttora in atto, come mostrano i dati geodetici satellitari. In profondità questo raccorciamento si trasforma in uno sforzo di caricamento di faglie di tipo compressivo localizzate sia al piede delle Alpi Meridionali, sia al piede dell’Appennino Settentrionale. Leggi il resto di questa voce

Italia sismica: i terremoti della prima metà di Settembre 2012

L’attività sismica in Italia ha fatto registrare, nella prima metà di settembre del 2012, 627 terremoti. Una media di più di 40 eventi sismici al giorno. I più forti terremoti avvenuti in Italia  in questo periodo si sono verificati nel Canale di Sicilia tra il 14 ed il 15 settembre con magnitudo massima di 3.9.

Epicentri dei terremoti avvenuti in Italia dal 1 al 15 settembre 2012 . Sono presenti più di 600 terremoti, con simboli di dimensioni proporzionali alla magnitudo e colori in funzione della profondità (legenda in basso a sinistra). I dati sono scaricabili da iside.rm.ingv.it e visualizzabili con Google Earth.

Leggi il resto di questa voce

Italia sismica: i terremoti della seconda metà di Agosto 2012

L’attività sismica in Italia ha fatto registrare, nella seconda metà di agosto, 826 terremoti. Una media di circa 50 eventi sismici al giorno. Il più forte terremoto avvenuto in Italia è quello del 28 agosto in provincia di Reggio Calabria (M4.6, stella verde nella mappa sottostante).

Epicentri dei terremoti avvenuti in Italia dal 16 al 1 settembre 2012 (alle 10). Sono presenti più di 800 terremoti, con simboli di dimensioni proporzionali alla magnitudo e colori in funzione della profondità (legenda in basso a sinistra). I dati sono scaricabili da iside.rm.ingv.it e visualizzabili con Google Earth.

Leggi il resto di questa voce

%d blogger hanno fatto clic su Mi Piace per questo: