Archivi Blog

I terremoti studiati dai satelliti: l’interferometria SAR

Sono più di venti anni che i satelliti per l’Osservazione della Terra ci permettono di studiare i terremoti. In particolare, i satelliti che equipaggiano un particolare sensore RADAR, il SAR, sono ormai utilizzati sistematicamente per misurare gli effetti che un terremoto produce sulla superficie terrestre, misurando con elevata precisione le deformazioni crostali indotte dal terremoto stesso.

Un RADAR (RAdio Detection And Ranging) è un sensore attivo, ovvero dotato di una propria sorgente di segnali elettromagnetici, nella banda di frequenza delle onde radio, che invia impulsi di onde equi-spaziati tra loro in base ad una frequenza di ripetizione o PRF (Pulse Repetition Frequency). Gli impulsi giungono dallo spazio sulla superficie terrestre e l’eco che da essa torna verso il sensore viene registrato, fornendo informazioni puntuali circa la distanza tra l’oggetto (o target) sulla superficie colpito dall’impulso elettromagnetico e le sue caratteristiche di retro diffusione del segnale stesso.

I RADAR che vengono usati per l’osservazione della Terra e lo studio dei terremoti (ma anche delle eruzioni vulcaniche) sono i Synthetic Aperture Radar (SAR), in italiano Radar ad Apertura Sintetica.

Il SAR è un RADAR che, posto su una piattaforma satellitare in movimento, sfrutta il percorso compiuto dal satellite lungo la sua orbita per simulare una antenna “sintetica” più grande, e di molto, rispetto a quella reale che permette di ottenere informazioni più dettagliate sul target rispetto ad un RADAR classico, sotto forma di immagine.

Esempio di immagine SAR acquista in Egitto nel sito archeologico delle piramidi (Dati del satellite TerraSAR-X dell’Agenzia Spaziale Tedesca). I pixel dell’immagine, in bianco e nero, riportano informazioni sull’energia retrodiffusa dall’impulso RADAR e sulla distanza tra target a terra e sensore SAR a bordo del satellite.

Trattandosi di un RADAR, il SAR può operare praticamente in qualsiasi condizione meteorologica, sia di giorno che di notte. Esistono numerose applicazioni che sfruttano le immagini SAR. Tra esse ha assunto un ruolo di grande rilievo lo studio dei movimenti del suolo. Per raggiungere tale scopo si applica al dato SAR una particolare tecnica di elaborazione del segnale denominata Interferometria SAR, o InSAR.

L’InSAR è stata sviluppata intorno alla fine degli anni ’80 e si basa sul principio che, se disponiamo di due immagini SAR di una stessa scena acquisite da due punti di osservazione leggermente diversi, è possibile estrarre l’informazione circa la distanza che ciascun punto (il pixel delle immagini) al suolo ha rispetto al SAR. In pratica possiamo dire che la tecnica InSAR consente di misurare le differenze di distanza, pixel per pixel, tra due immagini SAR, e di fornire l’immagine delle variazioni avvenute tra la prima e la seconda immagine SAR nell’area “fotografata”.

L’immagine che risulta dall’applicazione della tecnica InSAR è detta interferogramma. Questo comporta che se tra la prima e la seconda immagine alcuni pixel si sono spostati, ad esempio a causa di un terremoto, l’interferogramma evidenzierà le aree che hanno subito tali modifiche e ne misurerà l’entità.

La prima volta che venne usata l’interferometria SAR per lo studio di un terremoto fu nel 1992. Fu il caso del terremoto di Landers, California (USA), che generò una energia che i sismologi quantificarono con una magnitudo momento 7.2. Gli esperti misurarono spostamenti in superficie superiori anche a 5 metri. E per decine di chilometri intorno all’epicentro del sisma la superficie terrestre presentava numerose fratture e scarpate prodotte dal sisma. L’estensione dell’area interessata dalle deformazioni non poteva consentire di avere un quadro sinottico degli effetti del sisma semplicemente attraverso osservazioni in situ degli effetti. Landers fu il primo esempio di utilizzo dell’InSAR che fornì un’immagine completa e dettagliata di ciò che il sisma aveva prodotto (vedi figura sotto).

Su un’area di circa 100 km x 100 km, il satellite europeo ERS-1 misurò spostamenti del suolo variabili tra circa 3 cm fino a svariati metri. In un interferogramma le deformazioni prodotte dal sisma, dette deformazioni “cosismiche”, sono evidenziate con una serie di “linee di eguale spostamento” denominate in gergo “frange” (in inglese fringes). Immagine da Massonnet, D. et al., 1993.

Vennero usate una coppia di immagini SAR acquisite dal satellite europeo ERS-1 (European Remote Sensing satellite 1), il primo satellite per lo studio della Terra equipaggiato con un sensore SAR. Era stato lanciato nel 1991 dall’Agenzia Spaziale Europea (ESA).  Ad esso fece seguito nel 1995 il gemello ERS-2. ERS-1 ed ERS-2 aprirono la strada ad una serie di missioni satellitari dedicate allo studio del nostro pianeta con i sensori SAR, lanciati dalle agenzie spaziali di tutto il mondo.

Negli anni seguenti, a questo primo successo fecero seguito altre applicazioni. Tra esse possiamo ricordare il primo esempio di utilizzo della tecnica InSAR in Italia, quando il 26 settembre 1997 due forti terremoti (il primo alle ore 00:33 di magnitudo Mw 5.8 e il secondo alle ore 09:40 di magnitudo Mw 6.0) colpirono l’area al confine tra Umbria e Marche. I ricercatori italiani dell’INGV applicarono la tecnica InSAR ad una coppia di immagini ERS-2 acquisite prima e dopo il 26 settembre, ottenendo l’interferogramma che misurò i movimenti in superficie che si estendevano per decine di chilometri dall’epicentro del terremoto e che raggiungevano un massimo di 25 cm.

Anche i recenti terremoti che hanno interessato l’Italia centrale ad Amatrice e Norcia, a partire da agosto 2016, sono stati studiati con l’InSAR, sfruttando i dati acquisiti da più moderni SAR, molto più performanti in termini di accuratezza di misura e dettaglio spaziale, come quello a bordo della missione COMSO-SkyMed (https://www.asi.it/it/attivita/osservare-la-terra/osservazione-della-terra/cosmo-skymed) dell’Agenzia Spaziale Italiana, della missione ALOS-2 (https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2) della Giapponese JAXA e della innovativa piattaforma Sentinel-1 (https://sentinel.esa.int/web/sentinel/missions/sentinel-1) dell’ESA.

La mappa delle deformazioni co-sismiche superficiali causate dai due eventi di Amatrice-Accumoli e Norcia (magnitudo momento 6.0 e 5.3, rispettivamente), avvenuti, a distanza di circa un’ora, nella notte del 24 agosto 2016, ottenuta con i dati SAR del satellite Sentinel-1 dell’Agenzia Spaziale Europea. Lo spostamento del suolo ha raggiunto valori massimi di circa 20 cm, approssimativamente in abbassamento.

Sono moltissimi i lavori presenti in letteratura scientifica che documentano le grandi potenzialità dell’InSAR, e sempre più numerose sono le applicazioni che ne mostrano l’utilità in casi pratici di impiego. Possiamo quindi affermare senza dubbio che l’InSAR ha assunto un ruolo di assoluto rilievo tra le tecniche di studio utilizzate nelle Scienze della Terra.

A cura di Christian Bignami (INGV – Osservatorio Nazionale Terremoti).

Referenze

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142. https://doi.org/10.1038/364138a0


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Prime interpretazioni dall’interferogramma differenziale ottenuto da dati radar del satellite europeo Sentinel-1

L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) – Gruppo di lavoro SAR del Centro Nazionale Terremoti – ha ricostruito, in dettaglio, l’andamento dei movimenti del suolo per ottenere informazioni importanti ai fini della valutazione della sequenza sismica successiva all’evento del 30 ottobre scorso (di magnitudo 6.5) che ha colpito le province di Macerata e Perugia. L’attività, coordinata dal Dipartimento della Protezione Civile (DPC), viene svolta dall’INGV e dall’Istituto per il Rilevamento Elettromagnetico dell’Ambiente Consiglio Nazionale delle Ricerche (CNR-IREA di Napoli), centri di competenza nei settori dell’elaborazione dei dati radar satellitari e della sismologia, con il supporto dell’Agenzia Spaziale Italiana (ASI).

Di seguito, due immagini realizzate dall’INGV grazie all’uso dei dati radar acquisiti dai satelliti della costellazione Sentinel-1 del Programma Europeo Copernicus, sfruttando la tecnica dell’Interferometria SAR Differenziale.

blog1

Interferogramma differenziale ottenuto da dati radar del satellite europeo Sentinel-1: ogni frangia di colore rappresenta un abbassamento del terreno di circa 3 cm superiore alle frange adiacenti. L’ellissi (di colore nero) indica la zona in cui si sono verificati i maggiori movimenti del terreno, più stretta a nord e più larga a sud, estesa in lunghezza per circa 40 km e in larghezza per circa 15 km. I simboli in giallo indicano il verso del movimento del terreno: + sollevamento e – abbassamento.

Nella prima figura (qui sopra) è mostrato l’interferogramma differenziale ottenuto da dati radar del satellite europeo Sentinel-1: ogni frangia di colore rappresenta un abbassamento del terreno di circa 3 cm superiore alle frange adiacenti. L’ellissi (di colore nero) indica la zona in cui si sono verificati i maggiori movimenti del terreno, più stretta a nord e più larga a sud, estesa in lunghezza per circa 40 km e in larghezza per circa 15 km. I simboli in giallo indicano il verso del movimento del terreno: + sollevamento e – abbassamento. Verso l’interno dell’ellisse il ribassamento del terreno aumenta fino a raggiungere, in prossimità del paese di Castelluccio di Norcia, circa 70 cm sulla verticale. Fuori dall’ellisse, a est e a ovest, il terreno è stato sollevato di alcuni centimetri. La linea verde rappresenta l’andamento approssimativo del sistema di faglie che ha originato i vari terremoti della sequenza. La punta dei triangoli lungo la linea verde indica il lato in cui i blocchi di crosta terrestre sono ribassati lungo le superfici di faglia. Le stelle verdi mostrano, invece, i tre eventi maggiori della sequenza (24 agosto, M 6.o; 26 ottobre, M 5.9; 30 ottobre, M 6.5).

Le frange di colore mostrano un movimento del terreno complesso e che evidenzia due distinti fenomeni: la dislocazione sismica, ovvero lo scorrimento degli opposti blocchi di crosta terrestre lungo le superfici di faglia profonde che hanno causato i tre terremoti principali, e i movimenti molto superficiali e localizzati come scarpate di faglia, riattivazioni di frane e sprofondamenti carsici. Alla rottura direttamente legata al sisma (la dislocazione sulla faglia) è imputabile l’andamento concentrico generale delle frange colorate. Mentre le interruzioni, gli addensamenti o le piegature ad angolo acuto delle frange sono dovute a movimenti di rottura più superficiali. Questo è il contributo che i terremoti, ripetendosi nel tempo, forniscono alla costruzione dei paesaggi appenninici.

Utilizzando questi e altri dati è possibile ricostruire nel dettaglio la posizione e le caratteristiche delle faglie profonde e ottenere, quindi, informazioni molto importanti per la valutazione della sequenza sismica.

blog2

Interferogramma differenziale ottenuto da dati radar del satellite europeo Sentinel-1 su cui sono stati sovrapposti i 2 piani di faglia attivati con il terremoto di Amatrice del 24 agosto scorso (in grigio) ed una possibile ricostruzione (non un modello) del piano di faglia su cui sono probabilmente avvenuti gli eventi del 26 e del 30 ottobre (in rosa).

La seconda figura (in alto) mostra in grigio i 2 piani di faglia attivati con il terremoto di Amatrice del 24 agosto scorso e in rosa, una possibile ricostruzione (non un modello) del piano di faglia su cui sono probabilmente avvenuti gli eventi del 26 e del 30 ottobre.

a cura del Gruppo di lavoro SAR, INGV – Centro Nazionale Terremoti


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

SPECIALE Cinque anni dal terremoto dell’Aquila

Sono passati cinque anni dal terremoto del 6 aprile 2009. Come sempre, il nostro pensiero va anzitutto a coloro che con il terremoto hanno perso i loro cari e le loro case. Come ricercatori, abbiamo continuato gli studi della regione aquilana e delle aree limitrofe, con l’obiettivo di comprendere sempre meglio i meccanismi alla base dei terremoti e definire la pericolosità dell’area. I nostri studi, anche quelli che non sembrano avere ricadute immediate sulla riduzione del rischio sismico, contribuiscono a costruire, passo dopo passo, una maggiore conoscenza della Terra e dei processi deformativi che portano ai terremoti e ad aumentare la consapevolezza del fenomeno terremoto. In quest’ottica il 21 giugno 2013 è stata inaugurata la nuova sede INGV a L’Aquila e sono stati presentati i primi risultati del Progetto FIRB Abruzzo, frutto di un Accordo di Programma tra il Miur, la Regione Abruzzo e l’INGV.

In questo contributo riassumiamo alcune delle ricerche in corso, concentrandoci sugli aspetti della sismicità di questi anni, dell’identificazione, in superficie e in profondità, delle faglie attive e della risposta della geologia locale allo scuotimento sismico.

Analisi della sismicità

Nella figura sotto mostriamo la distribuzione spazio-temporale della sismicità nell’area aquilana dal 1 gennaio 2008 al 31 marzo 2014 (eventi di magnitudo ML maggiore o uguale a 2.0).

La sismicità nell'area aquilana dal 1 gennaio   2008 al 31 marzo 2014 (eventi di magnitudo ML maggiore o uguale a 2.0).  Questa animazione avanza mese per mese e mostra contemporaneamente tre mesi di sismicità e avanzano mese x mese.  La prima è più veloce (30 sec) la seconda è più lenta (1 m).

La sismicità nell’area aquilana dal 1 gennaio 2008 al 31 marzo 2014 (eventi di magnitudo ML maggiore o uguale a 2.0). Questa animazione avanza mese per mese e mostra contemporaneamente tre mesi di sismicità. Fonte dati: iside.rm.ingv.it

Tra gennaio e dicembre 2009 le nostre reti sismiche hanno registrato alcune decine di migliaia di terremoti nell’aquilano e grazie al catalogo di localizzazioni ad alta precisione è stata ricostruita con estremo dettaglio la geometria del sistema di faglie che si è attivato durante la sequenza sismica.

Tale catalogo, composto da più di 64 mila eventi sismici registrati nel 2009 da circa 70 stazioni sismiche è il più completo mai ottenuto per un terremoto di magnitudo moderata (i.e., M6) su faglie normali. Il catalogo è stato infatti ottenuto utilizzando procedure innovative di analisi automatica delle forme d’onda registrate per l’individuazione dei tempi di arrivo delle onde P ed S e per la localizzazione automatica ad alta precisione, con errori di localizzazione degli eventi estremamente piccoli, inferiori ai 50-100 m.

La mappa e le 20 sezioni verticali mostrano la distribuzione degli eventi sismici avvenuti nella zona aquilana prima dell'evento del 6 Aprile (foreshocks; pallini rossi in mappa) e dopo l'evento del 6 Aprile (aftershocks; pallini neri in mappa). Le stelle con diversi colori indicano gli eventi più forti della sequenza per i quali sono stati riportati anche i meccanismi focali. Inoltre, in mappa riportiamo le tracce delle porzioni della faglia che hanno prodotto rotture in superficie osservabili sul terreno (linee gialle), e le tracce delle 20 sezioni riportate nello slideshow (linee nere). Nelle 20 sezioni i simboli utilizzati sono uguali a quelli utilizzati nella mappa.

La mappa e le 20 sezioni verticali mostrano la distribuzione degli eventi sismici avvenuti nella zona aquilana prima dell’evento del 6 Aprile (foreshocks; pallini rossi) e dopo l’evento del 6 Aprile (aftershocks; pallini neri). Le stelle con diversi colori indicano gli eventi più forti della sequenza per i quali sono stati riportati anche i meccanismi focali. Inoltre, sono riportate le tracce delle porzioni di faglia che hanno prodotto rotture in superficie osservabili sul terreno (linee gialle). Le 20 sezioni lungo le linee nere numerate sono riportate di seguito, Valoroso et al., 2013.

Secondo questo studio, il sistema di faglie attivato è composto da due segmenti di faglia principali immergenti verso sudovest: la faglia dell’Aquila (o Paganica) a sud e la faglia di Campotosto a nord. Inoltre, nella fase finale della sequenza sismica si è attivato un cluster di sismicità, cioè una concentrazione di terremoti di bassa magnitudo nel settore nord del sistema di faglie, vicino a Cittareale. La lunghezza complessiva del sistema di faglie attivato, che si estende in direzione nordovest-sudest lungo gli Appennini, è di circa 50 km.

Le 4 sezioni verticali che seguono (1-4, in rosso nella mappa sopra) mostrano la distribuzione degli eventi sismici avvenuti nella zona aquilana lungo la porzione meridionale della faglia dell’Aquila. Leggi il resto di questa voce

Terremoto in Lunigiana: modello preliminare di faglia da dati satellitari

Subito dopo l’evento del 21 giugno il Dipartimento della Protezione Civile (DPC) ha attivato i centri di competenza ASI, INGV e IREA-CNR per la misura, tramite i satelliti italiani COSMO-SkyMed, delle deformazioni del suolo causate dal terremoto, al fine di descrivere la sorgente sismica. All’INGV è stata chiesta l’attivazione dell’infrastruttura SIGRIS sviluppata in un progetto ASI e INGV, attualmente gestita da ricercatori del Centro Nazionale Terremoti INGV.  SIGRIS comprende procedure, algoritmi ed operatori in grado di generare e validare prodotti geofisici ad alto contenuto scientifico, basati su dati da satellite, secondo standard già concordati con il DPC per la gestione delle emergenze sismiche.

L’INGV ha preliminarmente verificato l’esistenza, per l’area epicentrale, di immagini radar COSMO-SkyMed di archivio precedenti il sisma, indispensabili per eseguire le misure dei movimenti del suolo generati dal terremoto (spostamento del suolo cosismico). E’ stata quindi richiesta ad ASI l’acquisizione di immagini post-evento, che ASI ha pianificato, acquisito e consegnato in tempi rapidissimi.  L’INGV ha quindi generato le mappe di deformazione del suolo con la tecnica denominata Interferometria SAR Differenziale o DInSAR (1).  Bisogna sottolineare che attualmente il sistema di satelliti italiani COSMO-SkyMed è, a livello mondiale, quello che garantisce la maggiore rapidità di intervento per la misura delle deformazioni crostali dovute ad un terremoto.

La deformazione del suolo
Nella figura 1 è mostrato l’interferogramma SAR (2) ottenuto da due immagini COSMO-SkyMed acquisite ad 1 giorno di distanza a cavallo del terremoto: alle 5 di mattina del 21/6 e alla stessa ora del 22/6.

Figura 1. Frange di colore dell'interferogramma che descrive lo spostamento conseguente al terremoto del 21 giugno

Figura 1. Frange di colore dell’interferogramma che descrive lo spostamento conseguente al terremoto del 21 giugno

Sommando le frange della figura 1, si ottiene lo spostamento totale del suolo, espresso Leggi il resto di questa voce

SPECIALE Quattro anni dal terremoto dell’Aquila

AquilaIn occasione del quarto anniversario del terremoto del 2009, i ricercatori dell’INGV tornano a esprimere la loro vicinanza alla città dell’Aquila e agli aquilani.
In questi quattro anni le nostre ricerche sono proseguite, per capire i dettagli dei processi fisici all’origine dei terremoti e per contribuire alla definizione di iniziative e politiche volte alla mitigazione del rischio sismico. In quest’ottica abbiamo aperto una sede dell’istituto nel centro storico dell’Aquila, anche come riferimento e informazione per le autorità e la cittadinanza.
Le nostre analisi e i nostri studi  hanno evidenziato alcuni aspetti importanti della sismogenesi, come il ruolo giocato dai fluidi nella crosta terrestre nella generazione dei terremoti e i meccanismi di propagazione e focalizzazione delle onde che causano lo scuotimento del terreno e quindi il danneggiamento, o il crollo, degli edifici soprastanti.

Leggi il resto di questa voce

%d blogger hanno fatto clic su Mi Piace per questo: