Archivi Blog

La deformazione del suolo ad Ischia rilevata dalla Rete tiltmetrica

Il monitoraggio tiltmetrico: a cosa serve?

Il monitoraggio tiltmetrico rappresenta una delle tecniche più usate nel rilevamento della deformazione del suolo in aree vulcaniche, in quanto consente lo studio della cinematica delle aree vulcaniche avvalendosi della registrazione in continuo della variazione d’inclinazione della superficie terrestre nei luoghi in cui sono installati i tiltmetri.

E’ proprio la variazione dell’angolo di inclinazione (tilt), misurata da questi sensori, che consente di correlarla eventualmente alla deformazione indotta in superficie dai potenziali cambiamenti della pressione magmatica dovuti all’accumulo e/o allo spostamento di magma all’interno della struttura vulcanica o semplicemente dalla circolazione dei fluidi idrotermali (vedi Figura 1).

Figura 1 – Schema delle deformazioni del suolo registrate da un tiltmetro durante le fasi: pre-eruttiva (stage 1), eruttiva (stage 2) e post-eruttiva (stage 3); [Dvorak e Dzurisin, 1997]

Oltre al monitoraggio delle aree vulcaniche, le informazioni ottenute dallo studio dei segnali tiltmetrici hanno un vasto campo di applicazione che va dal controllo strutturale di grandi opere ingegneristiche come dighe, ponti, ecc., allo studio della marea crostale.

La variazione di tilt o ground tilt registrata da un tiltmetro è la variazione lungo una determinata direzione dello spostamento verticale, quindi una misura di come cambia la pendenza del suolo nel tempo. Lo spostamento verticale del suolo, invece, è misurabile con il GPS in maniera continua oppure mediante tecniche di interferometria SAR o anche attraverso livellazioni di alta precisione lungo linee altimetriche appositamente realizzate.

I sensori utilizzati dall’Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Vesuviano (INGV-OV) sono tiltmetri elettronici biassiali con trasduttore a bolla che misurano le variazioni di inclinazione del suolo lungo due direzioni ortogonali (indicate come X e Y nelle Figure 2a e 3).

Il trasduttore è costituito da un tubicino di vetro (uno per ogni asse) contenente un fluido elettrolitico e chiuso agli estremi da tre elettrodi inseriti in un circuito elettrico a ponte che, ogni qualvolta viene sbilanciato in seguito ad una rotazione (o ad una accelerazione) genera una tensione elettrica proporzionale all’entità del tilt (Figura 2b).

Nel monitoraggio delle componenti di inclinazione della deformazione del suolo vengono impiegati 3 tipi diversi di sensore: quelli analogici che possono essere di tipo superficiale o da pozzo (Figura 2a) e quelli digitali che sono solo da pozzo (Figura 3).

Figura 2 – a) Tiltmetri analogici. b) Principio di funzionamento del trasduttore inclinometrico.

Il monitoraggio tiltmetrico viene effettuato già da molti anni nelle aree vulcaniche campane ed attualmente questi segnali geofisici sono acquisiti da 3 Reti:

  • Rete tiltmetrica dei Campi Flegrei con 10 stazioni, di cui 4 attrezzate con sensori analogici di superficie, 3 attrezzate con sensori analogici da pozzo (Figura 2a) e 3 attrezzate con sensori biassiali digitali da pozzo di ultima generazione (Figura 3).
  • Rete tiltmetrica del Vesuvio costituita da 7 stazioni, di cui 3 attrezzate con sensori analogici di superficie e 4 attrezzate con sensori digitali da pozzo.
  • Rete tiltmetrica dell’Isola d’Ischia con 3 stazioni attrezzate con sensori digitali da pozzo.

Poiché i segnali registrati dai sensori di superficie (operanti in gallerie o pozzetti poco profondi) sono influenzati da fattori ambientali, come le variazioni di temperatura, la pressione, le precipitazioni e le variazioni della falda acquifera, che possono mascherare la reale deformazione misurata, negli ultimi anni sono stati utilizzati i sensori da pozzo di tipo digitale, calati in pozzi perforati a – 25 m dal piano campagna.

L’unità di misura angolare utilizzata in ambito tilmetrico è il µradiante (microradiante), equivalente ad uno spostamento verticale del suolo di 1 mm ad 1 km di distanza; poiché però sia i sensori tiltmetrici di superficie che quelli da pozzo misurano un campo sufficientemente vicino e quindi al massimo di qualche centinaio di metri, può essere considerata attendibile l’equivalenza di 1 µradiante ad uno spostamento di 0.5 mm a 500 m di distanza.

Rete Tiltmetrica di Ischia e specifiche tecniche

L’INGV- OV ha realizzato nell’aprile 2015 una rete di 3 tiltmetri sull’Isola di Ischia, nell’ambito del Progetto Vulcamed. La sua geometria è stata progettata considerando gli allineamenti strutturali, la morfologia dell’Isola [de Vita et al., 2010], l’andamento della deformazione del suolo dedotto dalle misure ottenute attraverso le campagne di livellazione geometriche di precisione effettuate in oltre 20 anni [Del Gaudio et al., 2011], nonché la fattibilità degli scavi [Aquino et al., 2014].

Le 3 stazioni tiltmetriche sono state installate nelle seguenti località:

  • Stazione ISC (settore NE), situata nel Comune di Ischia, in prossimità dell’Acquedotto EVI in località Montagnone Alto; il sensore è collocato in un deposito di piroclastiti che ricopre il duomo lavico di Montagnone;
  • Stazione BRN (settore SE), situata nel Comune di Barano d’Ischia, in Località Vateliero; il sensore è posizionato nella coltre eluvio-colluviale su depositi di frana e di piroclastici del Vateliero;
  • Stazione FOR (settore SW), situata nel Comune di Forio, in località Panza; il sensore è collocato nel tufo.

I 3 tiltmetri digitali da pozzo sono stati installati a profondità comprese tra 25 e 27 m dal piano campagna (Figura 3). I segnali acquisiti in digitale sono trasmessi al Centro di Monitoraggio dell’INGV- OV. Ogni stringa di dati contiene le componenti NS ed EW direttamente in µradianti, l’azimuth magnetico in gradi, la temperatura in °C, la data e l’ora, i minuti, i secondi, l’alimentazione in mV ed il numero di serie del sensore.

Ad Aprile 2015 è andata in funzione la rete di acquisizione dati ma, in considerazione del fatto che per i primi 30-40 giorni dall’installazione possono essere osservate delle derive sui segnali dovute al riassestamento dei pozzi perforati (indurimento del cemento e riequilibrio tensionale dei fori), i primi segnali tiltmetrici utili per la caratterizzazione della deformazione che interessa l’Isola sono stati raccolti a partire dal 1 Giugno 2015.

Figura 3 – Tiltmetro digitale Lily e componenti elettroniche

I segnali acquisiti con tiltmetri profondi

I segnali sono acquisiti ogni minuto, con la singola lettura mediata su 8000 campioni acquisiti ogni 0.0075 Hz, la precisione del clock interno è di 1.5 sec/mese ed il tempo viene sincronizzato con cadenza settimanale, risultando quindi un errore di ± 0.4 secondi.

I dati vengono trasmessi quotidianamente al Centro di Monitoraggio dell’INGV- OV e successivamente elaborati attraverso vari passaggi  riassumibili in 3 fasi principali:

  1. preprocessing: lettura dei dati aggiornati, eliminazione delle acquisizioni effettuate con tempi sbagliati; interpolazione lineare dei dati eventualmente mancanti e despiking dei segnali;
  2. processing: scelta del filtro adatto alla rappresentazione grafica dei segnali acquisiti e corretti, rappresentazione delle componenti spettrali dei segnali, rappresentazione grafica delle componenti NS e EW corrette, spettrogramma;
  3. studio del segnale: valutazione della direzione di tilting prevalente e confronto con altre stazioni, studio di eventuali anomalie in ampiezza e frequenza presenti nei segnali, interpretazione degli osservabili dal confronto con i dati acquisiti con altre metodologie geofisiche e geochimiche.

I dati non vengono soggetti ad alcun procedimento di filtraggio delle periodicità di tipo termico, data la profondità di installazione del sensore, a differenza delle stazioni di tipo superficiale [Ricco et al., 2003; Ricco et al., 2013].

Le caratteristiche delle stazioni tiltmetriche sono riportate in tabella:

Stazione Località Prof. (m) Fc (Hz) Coord. (Lat /Long) Quota (m. s.l.m.)
ISC Località Montagnone Alto, Comune di Ischia -25 0.017 40.74°

13.93°

173
BRN Località Vateliero, Comune di Barano d’Ischia -25 0.017 40.71°

13.93°

145
FOR Località Panza, Comune di Forio -27 0.017 40.71°

13.88°

157

Deformazione osservata attraverso i tiltmetri nel lungo periodo

La deformazione del suolo che interessa l’Isola di Ischia mostra un andamento di inclinazione polarizzato in direzione NNW, come si può evincere dalla Figura 4.

In essa è riportata la linea di costa dell’isola e le principali curve di livello, georeferenziate, sovrapposte ad un reticolo che rappresenta il piano bidimensionale delle inclinazioni (con asse Y+ orientato a N ed asse X+ orientato ad E) in cui ogni lato della maglia equivale ad una variazione tiltmetrica di 20 µradianti e ad una distanza di 500 m.

I 3 siti-stazione ISC, BRN e FOR, indicati con una freccia nera puntata verso il basso, sono contraddistinti da colori diversi come anche le curve che da essi hanno origine. Le curve rappresentano la variazione tiltmetrica cumulativa (odografo) a partire dal 1 Giugno 2015. Inoltre, la freccia nera puntata verso l’alto indica il verso della deformazione e convenzionalmente i settori di crosta terrestre in abbassamento rispetto alla posizione dei siti stazione.

Figura 4 – Variazione tiltmetrica cumulativa (odografo) registrato ai 3 siti-stazione della rete di Ischia nel biennio 2015-2017, filtrato delle periodicità inferiori a 10 giorni. L’origine di ogni vettore tilt è siglata con il nome del sito stesso ed indicata convenzionalmente con una freccia puntata verso il basso, mentre l’estremo libero è indicato con una freccia puntata verso l’alto. Il verso di ogni vettore (che indica settori di crosta terrestre in abbassamento) è univocamente definito dal suo estremo libero. I 3 siti-stazione ISC, BRN e FOR, indicati con una freccia nera puntata verso il basso, sono contraddistinti da colori diversi come anche le curve che da essi hanno origine: ISC (grigio), BRN (giallo) e FOR (verde).

In 27 mesi, dal 2015 al 2017 le 3 stazioni hanno misurato una variazione di tilt totale che ammonta a 145.3 µradianti ad ISC, 105.6 a BRN e 102.7 a FOR.

La stazione ISC, situata nel settore di NE ed a una quota maggiore alle altre, è quindi quella che si inclina di più, mentre si calcola una riduzione rispetto ad essa del 27% a BRN e del 29% a FOR.

Nei primi 8 mesi del 2017, invece i valori misurati sono stati: 47.1 µradianti ad ISC, 15.7 a BRN e 25 a FOR; ISC risulta sempre quella che si inclina maggiormente mentre la riduzione in ampiezza alle altre stazioni aumenta (67% a BRN e 47% a FOR).

Si può notare inoltre che, procedendo dal quadrante nord-orientale dell’Isola (stazione ISC) verso il settore meridionale (BRN) e poi verso quello sud-occidentale (FOR), la direzione dei vettori tilt resta praticamente costante seppur con qualche piccola rotazione; solo la stazione FOR esibisce inizialmente una direzione di tilting verso NW che negli ultimi 2 anni tende a riallinearsi con quella NNW di ISC.

La deformazione del suolo ricavata dal tilt (in un raggio di 500 m), equivale ad un abbassamento di più di 7 cm a NNW della stazione ISC, di 5 cm a NNW della stazione BRN e di 5 cm a NNW della stazione FOR.

Il campo di spostamento del suolo misurato negli anni passati (livellazioni effettuate negli ultimi 30 anni) evidenzia estesi fenomeni deformativi nella zona centro-meridionale (Serrara-Fontana) e nord-occidentale (Lacco Ameno località Fango) con velocità di subsidenza leggermente inferiori al cm/anno [Del Gaudio et al., 2011] (Figura 5a,b).

Dal confronto, quindi, tra dati di inclinazione e spostamento verticale del suolo si desume che le direzioni di tilting sono coerenti con tale andamento di deformazione, mentre le velocità attuali di subsidenza, ricavate dai dati tiltmetrici, risultano raddoppiate rispetto a quelle misurate fino al 2010.

Figura 5 – Andamento deformativo dell’Isola di Ischia misurato attraverso le livellazioni di precisione dal 2003 al 2010. a) Variazioni di quota lungo la linea “Costiera”. b) Variazioni di quota lungo la linea “Borbonica”.

Deformazione osservata attraverso i tiltmetri ed associata al terremoto del 21 agosto 2017

L’evento sismico del 21 agosto 2017, ore 20:57:52 italiane, è stato registrato dalle 3 stazioni tiltmetriche i cui segnali hanno mostrato molteplici peculiarità.

La stazione ISC, la più vicina all’area epicentrale, nell’intervallo temporale 20:56÷21:03, ha subito un tilt cosismico di 6.3 µradianti in direzione NW. Tale stazione che già nei 2 anni precedenti si inclinava in direzione NNW in misura notevole, durante l’evento sismico si è definitivamente inclinata in maniera permanente lungo una direzione allineata con l’epicentro (Figura 6a, b).

Figura 6 – Variazione tiltmetrica registrata alla stazione ISC. a) Sono riportate le singole componenti NS ed EW registrate nell’intervallo temporale 20:51÷20:59. b) Sono mostrate le nuvole di punti nella griglia delle inclinazioni che rappresentano la variazione tiltmetrica (in µradianti) registrata dal 1 luglio 2017 al 21 agosto 2017; si notano 2 concentrazioni spaziali di punti (clusters) separate tra loro in corrispondenza dell’arrivo del treno di onde generato dal terremoto, l’offset spaziale si configura pertanto come deformazione cosismica permanente. Le frecce gialle sovrapposte corrispondono al vettore tilt apparente calcolato tra le 20:56 ed i minuti successivi, mentre la freccia rossa rappresenta il tilt cosismico. La freccia nera indica la rotazione della direzione di tilting.

Analizzando la figura 6b, in cui è mostrata nella griglia delle inclinazioni la variazione tiltmetrica totale registrata alla stazione ISC dal 1 Luglio 2017 al 21 Agosto, sono evidenti 2 nuvole di punti: una prima nuvola allineata in direzione NS relativa alla deformazione registrata fino a 2 minuti prima del terremoto mentre la seconda, più piccola e di forma ovale, si osserva a partire dal quinto minuto successivo all’evento, quando cioè il sensore tiltmetrico ha raggiunto di nuovo il suo equilibrio meccanico.

Si osserva inoltre che il punto-stazione subisce una variazione di tilt apparente (con componente di accelerazione orizzontale) in direzione SSW un minuto prima dell’evento (20:57), una seconda variazione in direzione SW durante l’evento stesso e successivamente si inclina permanentemente a NW, mostrando una chiara rotazione in senso orario della direzione di tilting, mostrata in Figura 6b con una freccia nera.

Figura 7 – Variazione tiltmetrica registrata alla stazione BRN. a) Sono riportate le singole componenti NS ed EW registrate nell’intervallo temporale 20:51÷20:59. b) E’ mostrata la nuvola di punti nella griglia delle inclinazioni che rappresenta la variazione tiltmetrica (in µradianti) registrata dal 1 luglio 2017 al 21 agosto; si osserva l’assenza di offset spaziale durante l’evento sismico e di conseguenza l’assenza di deformazione cosismica permanente. Le frecce gialle sovrapposte corrispondono al vettore tilt apparente calcolato tra le 20:56 ed i minuti successivi, mentre la freccia rossa rappresenta il tilt cosismico. La freccia nera indica la rotazione della direzione di tilting.

La stazione BRN (distante in direzione SE dall’epicentro) che nei 2 anni precedenti già si inclinava in direzione NNW, ha subito un minimo incremento di tilt nelle 2 componenti (Figura 7a). Anche in questo caso, durante l’evento, il punto-stazione subisce una variazione di tilt in direzione SW e successivamente mostra una rotazione in senso antiorario, per poi rientrare nella nuvola di punti. In Figura 7b la rotazione antioraria della direzione di tilting viene mostrata con una freccia nera.

La stazione FOR (posizionata in direzione SW rispetto all’epicentro) che nei 2 anni precedenti si inclinava come le altre in direzione NNW, ha subito nell’intervallo temporale 20:56÷21:03 un tilt cosismico di 5.3 µradianti in direzione W.

Figura 8 – Variazione tiltmetrica registrata alla stazione FOR. a) Sono riportate le singole componenti NS ed EW registrate nell’intervallo temporale 20:51÷20:59. b) Sono mostrate le nuvole di punti nella griglia delle inclinazioni che rappresentano la variazione tiltmetrica (in µradianti) registrata dal 1 luglio 2017 al 21 agosto; si notano 2 concentrazioni spaziali di punti (clusters) separate tra loro in corrispondenza dell’arrivo del treno di onde generato dal terremoto, l’offset spaziale si configura pertanto come deformazione cosismica permanente. Le frecce gialle sovrapposte corrispondono al vettore tilt apparente calcolato tra le 20:56 ed i minuti successivi, mentre la freccia rossa rappresenta il tilt cosismico. La freccia nera indica la rotazione della direzione di tilting.

Inoltre, analizzando la Figura 8b, come per il segnale relativo alla stazione ISC, si evidenziano 2 nuvole di punti: la prima allineata in direzione NS relativa alla deformazione registrata fino a 2 minuti prima del terremoto mentre la seconda, più piccola e di forma circolare, si osserva a partire dal quinto minuto successivo all’evento, quando cioè il sensore tiltmetrico ha raggiunto di nuovo il suo equilibrio meccanico.

Si osserva inoltre che il punto-stazione subisce una forte variazione di tilt in direzione SSE un minuto prima dell’evento (20:57) (come per i segnali della stazione ISC), una ulteriore variazione in direzione NNW durante l’evento stesso e successivamente si inclina permanentemente ad W, esibendo una chiara rotazione della direzione di tilting in senso antiorario, mostrata in Figura 8b con una freccia nera.

Conclusioni

L’andamento di inclinazione del suolo dell’Isola di Ischia, desunto delle variazioni di tilt misurate nei 3 punti stazione dal 2015 ad oggi, mostra un abbassamento verso NNW generalizzato ma più pronunciato alla stazione ISC, situata a NE dell’Isola.

L’evento sismico del 21 Agosto registrato dai 3 tiltmetri, ha mostrato una deformazione cosismica permanente alle stazioni poste ad Est ed a SW dell’area epicentrale. La stazione ISC, più vicina all’epicentro, ha subito un tilt cosismico di 6.3 µradianti in direzione NW (Figure 6 e 9) e la stazione FOR ha registrato un tilt cosismico di 5.3 µradianti in direzione W (Figure 8 e 9), mentre la stazione BRN, situata a SE dall’area epicentrale ha mostrato un minimo incremento di tilt (Figure 7 e 9).

Rispetto agli andamenti strutturali dell’Isola, il tilt cosismico di ISC è legato indubbiamente alla subsidenza a N del M. Epomeo e quindi alla deformazione dell’area epicentrale stessa; quello subito dalla stazione FOR, situata nel settore di SW è attribuibile alla posizione del sensore stesso, situato alla base di un sistema di faglie che degradano anch’esse verso W e che sono ben lubrificate dalla circolazione idrica sottostante.

Figura 9 – Deformazioni tiltmetriche cosismiche permanenti osservate alla stazioni ISC (freccia rossa) e FOR (freccia verde). La stella in blu indica l’epicentro del terremoto del 21 Agosto.

Inoltre, è evidente dai segnali tiltmetrici delle 3 stazioni un tilting notevole in direzione Sud sia 1 minuto prima che durante il terremoto (fatta eccezione per FOR), all’interno di una rotazione dello stesso in senso orario a NE ed in senso antiorario a SE ed a SW (Figure 6, 7 e 8). La cerniera della deformazione registrata nell’intervallo temporale 20:51÷20:59 sembra essere proprio BRN, in quanto è l’unica delle 3 stazioni a subire una rotazione del vettore che non si conclude con un tilt cosismico (Figura 9) [Di Napoli et al., 2009]; l’assenza di deformazione permanente a BRN è dovuta alla sua maggiore distanza dall’epicentro.

Figura 10 – Tilting registrato dalle 3 stazioni nel 2017. I triangolini neri sovrapposti al tilt cumulativo indicano i 4 eventi sismici occorsi il 21, 23 e 30/8. La traslazione verso W delle direzioni di tilting alle stazioni FOR ed ISC dopo l’evento del 21/8 è solo apparente ed è dovuta alla rappresentazione bidimensionale del tilt.

Poiché i segnali tiltmetrici sono sensibili anche alle accelerazioni orizzontali del terreno è ragionevole supporre che le forti variazioni di tilt registrate possano avere anche una componente di accelerazione orizzontale. Si osserva inoltre che, dopo il terremoto del 21 Agosto ed i tre eventi successivi del 23 e 30 Agosto, le direzioni preferenziali di tilting sono rimaste pressoché invariate alle 3 stazioni come evidenziato in Figura 10. La traslazione verso W di tali direzioni alle stazioni FOR ed ISC è solo apparente ed è dovuta alla deformazione cosismica permanente rappresentata nel piano bidimensionale delle inclinazioni.

a cura di Ciro Ricco, Vincenzo Augusti, Giovanni Scarpato e Ida Aquino, INGV-Osservatorio Vesuviano.


Bibliografia

AGI, (2005). LILY Self-Leveling Borehole Tiltmeter. User’s Manual, no. B-05-1003, Rev. D.

Aquino I., Ricco C., Del Gaudio C., Augusti V., Scarpato G. (2016). Potenziamento delle reti tiltmetriche nell’area vulcanica campana: Rapporto sull’attività svolta nell’ambito del progetto Vulcamed. Rapporti Tecnici INGV anno 2016 numero 348.  ISSN 2039-7941.

De Vita S., Sansivero F., Orsi G., Marotta E., Piochi M., (2010). Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 k.y. The Geological Society of America Special Paper 464: 193-241

Del Gaudio C., Aquino I, Ricco C., Serio C. (2011). Monitoraggio Geodetico dell’Isola d’Ischia: Risultati della Livellazione Geometrica di Precisione Eseguita a Giugno 2010. Quaderni di Geofisica n. 87 anno 2011. ISSN 1590-2595

Di Napoli R., Martorana R, Orsi G., Aiuppa A., Camarda M., De Gregorio S., Cagliano Candela E., Luzio D., Messina N., Pecoraino G., Bitetto M., de Vita S., Valenza M. (2011), The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study, Geochem. Geophys. Geosyst., 12, Q07017, doi:10.1029/2010GC003476.

Dvorak J., Dzurisin D. (1997). Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Reviews of Geophysics, 35, 3 / August 1997. DOI: 10.1029/97RG00070

Ricco C., Aquino I., Del Gaudio C. (2003). Ground tilt monitoring at Phlegraean Fields (Italy): a methodological approach. Annals of Geophysics 46(6): 1297-­1314. ISSN: 1593-5213

Ricco C., Aquino I., Borgstrom S.E.P., Del Gaudio C. (2013). 19 years of tilt data on Mt. Vesuvius: state of the art and future perspectives.  Annals of Geophysics  vol. 56 n. 4  2013. DOI 10.4401/ag-6459.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

I satelliti osservano la deformazione degli acquiferi carsici

I grandi acquiferi carsici dell’Appennino si deformano in relazione alle variazioni stagionali e multi-annuali di piovosità. Questo il risultato principale di un articolo pubblicato di recente sul Journal of Geophysical Research dal titolo Transient deformation of karst aquifers due to seasonal and multi-year groundwater variations observed by GPS in southern Apennines, di Francesca Silverii et al., che è stato premiato (motivazione) all’ultimo Convegno annuale del GNGTS (Lecce, novembre 2016). La ricerca sfrutta l’analisi integrata di dati satellitari e dati idrologici di vario tipo per ricostruire le deformazioni periodiche. Nel lavoro vengono indagate le cause e indicate le possibili implicazioni del fenomeno osservato.

Uomo seduto e vortici d'acqua, Leonardo da Vinci, Windsor, Royal Library, c. 1513. "Acqua è fra i quattro elementi il secondo men greve e di seconda volubilità. Questa non ha mai requie insino che si congiunge al suo marittimo elemento [...]. Volentieri si leva per lo caldo in sottile vapore per l'aria. Il freddo la congela, stabilità la corrompe. [...] Piglia ogni odore, colore e sapore e da sé non ha niente.[...]". Parigi, Manoscritto C, f. 26v

Uomo seduto e vortici d’acqua, Leonardo da Vinci. “Acqua è fra i quattro elementi il secondo men greve e di seconda volubilità. Questa non ha mai requie insino che si congiunge al suo marittimo elemento […]. Volentieri si leva per lo caldo in sottile vapore per l’aria. Il freddo la congela, stabilità la corrompe. […] Piglia ogni odore, colore e sapore e da sé non ha niente.[…]”. Parigi, Manoscritto C, f. 26v (da: http://www.michelemossa.it/ )

Introduzione

Da alcuni decenni la geofisica si avvale di strumenti innovativi per studiare la deformazione della superficie terrestre. Grazie a osservazioni molto accurate ottenute tramite l’utilizzo dei satelliti appartenenti al Global Positionig System (GPS) si è oggi in grado di registrare deformazioni di ampiezza variabile (da pochi millimetri a svariati metri) che coinvolgono scale spaziali (da decine di metri a centinaia di chilometri) e temporali (dai secondi agli anni) molto diverse. In particolare, sfruttando tecnologie avanzate e complesse tecniche di processamento dei dati, i satelliti GPS permettono di registrare la posizione di un punto a terra (dove si trova l’antenna) con incertezze di pochi millimetri. Questa posizione, riferita a un definito sistema di coordinate, viene espressa tramite tre componenti (nord, est, verticale) e registrata con continuità nel tempo, dando luogo alle cosiddette “serie temporali”.

Come è ben noto, i terremoti sono in grado di deformare la superficie terrestre in modo più o meno visibile a seconda della loro entità. Le osservazioni ottenute tramite la tecnica GPS sono ormai largamente usate in tutto il mondo per studiare le deformazioni associate al ciclo sismico (qui) e hanno fornito un contributo molto importante per capire meglio la natura di questo fenomeno. Negli ultimi anni, inoltre, si è notata l’utilità delle osservazioni geodetiche per studiare l’effetto della redistribuzione delle grandi masse d’acqua sulla superficie terrestre. Ad esempio, le stazioni GPS installate in California hanno registrato un chiaro andamento di sollevamento associato alla forte siccità che ha colpito l’area californiana dal 2012 (link). Lo studio delle deformazioni idrologiche transienti (cioè variabili nel tempo) di origine non tettonica si sta rivelando di grande interesse in quanto può fornire informazioni uniche circa i trend climatici e il comportamento degli acquiferi, che rappresentano una risorsa indispensabile per l’uomo. L’individuazione dei segnali transienti non tettonici è inoltre fondamentale per la corretta stima delle deformazioni di origine tettonica e per lo studio delle eventuali interazioni con la sismicità.

I dati e la rete RING

In Italia è presente una rete di stazioni GPS permanenti, gestite in gran parte dall’Istituto Nazionale di Geofisica e Vulcanologia (Rete RING), che registrano continuamente la deformazione del suolo. Nel questo lavoro sono state analizzate le osservazioni GPS dell’Italia centro-meridionale ed è stato individuato un segnale transiente multi-annuale. Questo segnale è particolarmente forte nelle componenti orizzontali (ampiezza massima ≈ 1 cm) delle stazioni localizzate in prossimità degli acquiferi carsici degli Appennini e diminuisce con la distanza da essi (Fig. 1).

fig1

Fig 1. Serie temporali (posizione nel tempo) GPS osservate (punti colorati) relative a vari siti dell’Italia centro-meridionale. Le linee nere tratteggiate rappresentano un filtro gaussiano di 6 mesi di ampiezza. Le serie sono ordinate a partire dai siti sulla costa tirrenica (in basso) verso quelli sulla costa adriatica (in alto). Sinistra: componente orizzontale proiettata lungo una direzione perpendicolare all’asse degli Appennini (N45E); centro: componente orizzontale proiettata lungo una direzione parallela all’asse degli Appennini (N135E); destra: componente verticale. Si noti la simmetria per la componente N45E tra le serie sotto e sopra CDRU e SAL1. T1 e T2 si riferiscono a due intervalli di 2.5 anni in cui il segnale multi-annuale ha andamento opposto e per cui sono state stimate le velocità rappresentate in Fig. 2.

Risultati

Gran parte degli Appennini è costituita da rocce calcaree in cui per effetto del carsismo e della fratturazione si verifica l’infiltrazione e l’immagazzinamento di ingenti quantità d’acqua. Il segnale individuato presenta una caratteristica simmetria tra le stazioni a cavallo degli acquiferi, che si ritrova anche al livello delle oscillazioni stagionali: a intervalli alterni gli acquiferi subiscono espansione e contrazione (una sorta di andamento “a fisarmonica”), come evidenziato per gli intervalli temporali T1 e T2 in Fig. 2.

fig2

Fig 2. Velocità osservate (frecce nere) e modellate (frecce rosse) stimate dalle serie temporali GPS, le ellisse rappresentano l’errore al 95% dell’intervallo di confidenza. Le velocità sono state stimate come deviazioni rispetto al trend a lungo termine in un periodo di diminuzione della piovosità (T1) e in un periodo di aumento della piovosità (T2). Le aree ombreggiate in blu indicano gli acquiferi carsici. I segmenti blu indicano la posizione delle dislocazioni tensili verticali utilizzate per simulare l’apertura/chiusura delle fratture all’interno degli acquiferi. I grafici sulla destra rappresentano una sezione lungo la linea punteggiata nera in mappa. Sono mostrate la topografia (area grigia), le velocità osservate (cerchi neri) e modellate lungo il profilo (linea rossa) e la posizione della dislocazione (linea verticale blu).

La componente verticale delle osservazioni GPS è, per ragioni intrinseche alla tecnica, più rumorosa rispetto alle componenti orizzontali (Fig. 1). Un segnale transiente con andamento temporale simile a quello delle componenti orizzontali è però visibile anche nella componente verticale, soprattutto dopo aver mediato (“stacking”) le osservazioni di diverse stazioni. Questa operazione permette infatti di evidenziare le eventuali caratteristiche comuni a più serie temporali GPS. A differenza delle componenti orizzontali, il segnale transiente sulla componente verticale è presente con caratteristiche analoghe anche nei siti lontani dagli acquiferi carsici.

La correlazione spaziale con la distribuzione geografica degli acquiferi e l’analogia con il comportamento stagionale suggeriscono che il segnale transiente individuato abbia cause non tettoniche, in particolare associate alle variazioni stagionali e inter-annuali della quantità di acqua nella crosta terrestre. Negli Appennini centro-meridionali il clima è quello tipico delle zone montuose dell’area mediterranea, con estati secche e periodi autunnali e invernali caratterizzati da precipitazioni abbondanti. L’andamento multi-annuale delle precipitazioni nell’area mediterranea risente inoltre di processi climatici a grande scala, come l’Oscillazione Nord Atlantica. Per verificare l’ipotesi circa l’origine del segnale transiente, sono stati analizzati diversi tipi di dati che forniscono indicazioni sulle variazioni del contenuto di acqua sulla/nella crosta terrestre. L’informazione più immediata in questo senso è data dalla misura della pioggia. Le osservazioni della rete pluviometrica della Protezione Civile-Regione Campania indicano un chiaro andamento multi-annuale delle precipitazioni con “periodicità” analoga a quella evidenziata nei dati GPS (Fig. 3).

La variabilità temporale delle precipitazioni sugli Appennini influenza la ricarica degli acquiferi, che si ripercuote sull’andamento dello scarico delle principali sorgenti. Ciò è evidente nella serie temporale di scarico della sorgente Sanità (Caposele), una delle principali sorgenti dell’Italia meridionale (Fig. 3). A periodi caratterizzati da precipitazioni scarse, come gli anni 2007-2008 (intervallo T1) corrisponde uno scarso scarico da parte della sorgente, viceversa accade in periodi ad elevata piovosità (intervallo T2). Sono state analizzate infine le osservazioni dei satelliti GRACE i quali, tramite misure delle variazioni del campo di gravità terrestre, forniscono indicazioni sulle variazioni del contenuto d’acqua totale (Terrestrial Water Storage, TWS) nella crosta terrestre superficiale (come acqua superficiale, sotterranea, umidità del suolo). La stima del TWS mediata sull’area in esame (Fig. 3) mostra un chiaro andamento multi-annuale con caratteristiche simili agli altri tipi di dati, come il periodo a basso TWS negli anni 2007-2008 (intervallo T1).

fig3

Fig. 3. Confronto tra le serie temporali orizzontali GPS (componente N45E) e i dati idrologici. I dati GPS (punti grigi e viola) sono le componenti orizzontali proiettate in direzione N45E di alcuni siti selezionati in area carsica e a cui è stato rimosso un trend a lungo termine (CDRU invertito per chiarezza). I dati di pioggia relativi alle due stazioni Gioi Cilento (linea rossa) e Senerchia (linea arancione) sono rappresentati come pioggia cumulata (sommata nel tempo) a cui è stato successivamente rimosso il trend a lungo termine. Questo tipo di rappresentazione mette in evidenza le deviazioni rispetto a un andamento costante della piovosità. La linea blu rappresenta lo scarico giornaliero della sorgente Caposele. La linea verde (con incertezza ±1-sigma) rappresenta la stima di TWS dai satelliti GRACE. Questa è espressa come altezza di acqua equivalente (EWH) e rappresenta una media sull’area in esame. I cerchi rossi rappresentano la serie verticale GPS “stacked” utilizzando stazioni dentro e fuori l’area carsica. La serie è campionata mensilmente alle stesse epoche del satellite GRACE (si noti l’asse verticale invertito).

Dal confronto tra i dati GPS e i dati idrologici emergono due caratteristiche principali. La componente verticale GPS è notevolmente anticorrelata con il dato di TWS dei satelliti GRACE (Fig. 3). Questo indica che a periodi a basso contenuto d’acqua (come l’intervallo T1) corrisponde un andamento di sollevamento che coinvolge tutta l’area e viceversa accade in periodi ad elevato contenuto d’acqua (come l’intervallo T2). Questo comportamento è tipicamente dovuto alla risposta elastica della crosta a un carico imposto in superficie, che, in questo caso, è dovuto principalmente all’acqua. La componente orizzontale GPS dei siti attorno agli acquiferi carsici è invece fortemente correlata con lo scarico della sorgente Caposele (Fig. 3). In particolare a periodi a scarico elevato (come l’intervallo T2) corrisponde un andamento di espansione degli acquiferi, mentre a periodi di siccità corrisponde un andamento di contrazione (come l’intervallo T2). La spiegazione proposta nel lavoro è che la deformazione orizzontale sia legata alla variazione dell’altezza della tavola d’acqua all’interno degli acquiferi che comporta una variazione della pressione idrostatica all’interno della fitta rete di fratture che caratterizza gli acquiferi. Nei periodi ad elevata ricarica degli acquiferi (come l’intervallo T2) l’aumento di pressione idrostatica provoca l’apertura delle fratture e, a sua volta, una deformazione di tutto l’acquifero. Visti i numerosi e non noti parametri in gioco, la vastità dell’area in esame e la complessità del fenomeno, nel lavoro è presentato un modello molto semplificato che simula le principali caratteristiche della deformazione osservata (Fig. 2).

Oltre all’interesse per la comprensione delle caratteristiche e la gestione ottimale delle grandi riserve d’acqua dell’Appennino, il lavoro mette in evidenza un forte segnale non-tettonico che ha implicazioni potenzialmente significative per l’analisi accurata dei processi tettonici da serie geodetiche.

A cura di Francesca Silverii (INGV, attualmente presso l’Università della California-San Diego).

L’articolo può essere visualizzato al seguente link o richiesto via e-mail all’autrice principale: francesca.silverii@ingv.it, fsilverii@ucsd.edu .

Terremoto in Italia centrale: le reti GPS misurano lo spostamento della faglia

Che la crosta terrestre in Italia si muova continuamente sotto l’azione delle placche continentali africana ed euroasiatica, causando terremoti anche disastrosi, non è cosa nuova. Ma riuscire a individuare la posizione e l’entità dei movimenti legati ad una singola faglia lunga pochi chilometri che si rompe durante un terremoto, è un risultato di particolare significato per migliorare le conoscenze sulla pericolosità sismica di una regione.

Una delle stazioni GPS usate per studiare il terremoto

Una stazione GPS installata vicino Norcia per studiare il terremoto (vedi la galleria fotografica delle attività INGV).

La deformazione permanente della crosta terrestre causata dal terremoto di magnitudo 6 che ha colpito la zona dell’Appennino tra Norcia e Amatrice lo scorso 24 agosto è stata misurata, oltre che dai satelliti con le tecniche radar, anche da stazioni GPS collocate a terra in un’ampia regione dell’Italia centrale. Tali stazioni appartengono alla Rete Integrata Nazionale GPS dell’INGV, all’ISPRA e al Dipartimento della Protezione Civile. Sono inoltre presenti caposaldi di reti GPS non permanenti, come la CA-GeoNet dell’INGV e l’IGM95. Altri dati GPS sono stati forniti dalle reti GNSS della Regione Abruzzo, Regione Lazio, ItalPos, NetGeo, Regione Umbria, ASI ed Euref. Le stazioni acquisiscono continuamente dati sulla loro posizione grazie ai segnali radio inviati dalla costellazione di satelliti USA in orbita intorno alla terra 24 ore al giorno da oltre 20 anni (GPS, Global Positioning System). Gli spostamenti del suolo registrati in ciascuna stazione sono stati calcolati dall’INGV analizzando i dati con differenti software scientifici (in particolare Bernese, Gamit e Gipsy) e successivamente combinati per fornire un unico risultato finale. Gli spostamenti sono stati calcolati come differenza tra le posizioni giornaliere delle stazioni nei giorni precedenti e successivi al terremoto. In questo modo sono stati ottenuti gli spostamenti massimi registrati nelle singole stazioni, compresa quella posta ad Amatrice che è la più vicina all’epicentro della scossa del 24 agosto, con un errore massimo di pochi millimetri (vedi figura sotto e il sito della Rete Integrata Nazionale GPS per maggiori dettagli sulle reti GPS presenti e i dati di spostamento cosismico alle singole stazioni).

Fig.1 Spostamenti cosismici orizzontali (frecce rosse) e verticali (frecce blu) rilevati dalla rete di stazioni GPS permanenti (quadrati neri e azzurri stazioni RING-INGV, http://ring.gm.ingv.it; quadrati arancioni stazioni ISPRA e Dipartimento della Protezione Civile) e da caposaldi di reti non permanenti (quadrati grigi caposaldi CA-GeoNet presenti in zona e in verde quelli in via misurazione; triangoli verdi caposaldi rete IGM95, http://www.igmi.org/geodetica/). Altri dati GPS sono stati forniti dalle seguenti reti GNSS: Regione Abruzzo (http://gnssnet.regione.abruzzo.it), Regione Lazio (http://gnss-regionelazio.dyndns.org), ItalPos (http://it.smartnet-eu.com), NetGeo (http://www.netgeo.it), Regione Umbria (http://www.umbriageo.regione.umbria.it), ASI (http://geodaf.mt.asi.it) ed Euref (http://www.epncb.oma.be). La stella gialla indica la posizione del terremoto di M=6.0, del 24 agosto 2016, ore 03:36.

Spostamenti cosismici orizzontali (frecce rosse) e verticali (frecce blu) rilevati dalla rete di stazioni GPS permanenti (quadrati neri e azzurri: stazioni RING-INGV; quadrati arancioni: stazioni ISPRA e Dipartimento della Protezione Civile) e da caposaldi di reti non permanenti (quadrati grigi: caposaldi CA-GeoNet presenti in zona e in verde quelli in via misurazione; triangoli verdi: caposaldi rete IGM95). Altri dati GPS sono stati forniti dalle seguenti reti GNSS: Regione Abruzzo, Regione Lazio, ItalPos, NetGeo, Regione Umbria, ASI ed Euref. La stella gialla indica l’epicentro del terremoto di magnitudo M6.0, del 24 agosto 2016 alle 03:36.

Le analisi preliminari basate sulle sole stazioni GPS attive al momento del terremoto mostrano che questo è stato generato da una faglia lunga oltre 18 km e inclinata di circa 50 gradi, che corre con direzione nord-nordovest – sud-sudest e che si immerge verso ovest al di sotto dell’Appennino. Il movimento di questa faglia ha causato un’estensione della catena appenninica di circa 3-4 centimetri tra il Tirreno e l’Adriatico.

Le registrazioni GPS ad alta frequenza (da 1 a 10 Hz) disponibili per alcune stazioni, mostrano chiaramente il passaggio delle onde sismiche e il conseguente movimento dinamico del suolo (vedi figura sotto).

Fig.2 Spostamento misurato dalla stazione GPS di Amatrice (AMAT, della regione Lazio), durante il terremoto di M=6.0, del 24 agosto 2016, ore 03:36. Sono mostrate le tre componenti del movimento: verticale (in rosso), in direzione Est (in verde) e Nord (blu). Il massimo movimento è stato di circa 15 cm, lungo la componente nord.

Spostamento misurato dalla stazione GPS di Amatrice (AMAT, della regione Lazio) durante il terremoto di magnitudo M6.0, del 24 agosto 2016, ore 03:36. Sono mostrate le tre componenti del movimento: verticale (in rosso), in direzione est (in verde) e nord (blu). Il massimo movimento è stato di circa 15 cm, lungo la componente nord.

In aggiunta a queste stazioni, che si trovano in gran parte in un’area più lontana dall’epicentro (far field), nell’area compresa tra Norcia e L’Aquila sono presenti oltre 120 caposaldi geodetici della Rete GPS Central Apennine Geodetic Network (CA-GeoNet), realizzata tra il 1999 e il 2000 dall’INGV proprio per studiare in dettaglio i movimenti delle faglie presenti in questa regione. Una parte di questi caposaldi si trova proprio nella zona epicentrale (near field). Questi dati permetteranno di ottenere nei prossimi giorni una immagine molto precisa sulla caratteristiche delle deformazioni avvenute nell’area più vicina all’epicentro (near field), non solo durante il terremoto, ma anche nella fase pre- e post-sismica. La figura sotto mostra una simulazione degli spostamenti cosismici attesi ai caposaldi di questa rete da un modello di faglia come quello descritto.

Fig. 3. Simulazione degli spostamenti cosismici orizzontali (frecce azzurre) attesi ai caposaldi GPS della rete CA-GeoNet presenti nella zona epicentrale (i triangoli verdi indicano le stazioni in misurazione; quelli bianchi le stazioni esistenti). Le stelle rosse rappresentano il mainshock del 24/08/2016 M=6.0, ore 03:36 italiane e le successive repliche principali. I palloni bianchi e rossi rappresentano il meccanismo focale dei terremoti, cioè alcune caratteristiche della faglia che ha generato il terremoto (in questo caso si tratta di una faglia normale o estensionale).

Simulazione degli spostamenti cosismici orizzontali (frecce azzurre) attesi ai caposaldi GPS della Rete CA-GeoNet presenti nella zona epicentrale (i triangoli verdi indicano le stazioni in misurazione; quelli bianchi le stazioni esistenti). Le stelle rosse rappresentano il terremoto principale del 24 agosto 2016, M6.0, ore 03:36 italiane e le successive repliche più forti. I meccanismi focali dei due terremoti più forti indicano che le faglie responsabili sono normali o estensionali.

I dati GPS acquisiti durante il terremoto del 24 agosto, come in occasione degli ultimi più forti terremoti italiani (Umbria-Marche nel 1997, Molise nel 2002 e L’Aquila nel 2009), permetteranno di comprendere sempre meglio l’evoluzione spazio-temporale delle deformazioni del suolo misurabili in superficie, in fase cosismica e inter-sismica, in vicinanza di faglie capaci di generare forti terremoti. L’analisi congiunta dei dati GPS con dati spaziali InSAR (vedi l’articolo del 30 agosto “La sequenza sismica in Italia centrale: un primo quadro interpretativo dell’INGV”), permetterà nei prossimi giorni di fornire un quadro originale e dettagliato delle deformazioni del suolo e delle caratteristiche della faglia, contribuendo a disegnare con sempre maggiore dettaglio il livello di pericolosità sismica dell’Appennino.

 

a cura del Gruppo di Lavoro INGV-CNT Centro Analisi Dati GPS: Marco Anzidei, Antonio Avallone, Adriano Cavaliere, Giampaolo Cecere, Daniele Cheloni, Nicola D’Agostino, Ciriaco D’Ambrosio, Roberto Devoti, Alessandra Esposito, Luigi Falco, Alessandro Galvani, Grazia Pietrantonio, Federica Riguzzi, Giulio Selvaggi, Vincenzo Sepe, Enrico Serpelloni.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Terremoto in Nepal: modello di faglia e repliche più forti

Il 12 maggio la zona di confine tra Nepal e Cina è stata colpita da una forte replica (aftershock), di magnitudo 7.3, localizzato circa 150 km a est dell’epicentro del terremoto principale della sequenza, quello di magnitudo 7.8 del 25 aprile.

La faglia del terremoto del 25 aprile

Per comprendere in che rapporto sia il forte aftershock del 12 maggio rispetto alla faglia attivata il 25 aprile, presentiamo i risultati di uno studio condotto dai ricercatori dell’INGV per determinare un modello di faglia della zona. Sono stati utilizzati i dati dello spostamento del terreno durante il terremoto del 25 aprile ottenuti da diversi satelliti (dettagli sotto). La faglia ottenuta dal modello si estende per circa 180 km da ovest verso est, e per circa 130 km (in senso nord – sud) dalla superficie a una profondità di 18 km al di sotto della catena himalayana (figura sotto). La distribuzione del movimento sul piano di faglia risulta molto eterogenea, con un massimo di quasi 6 metri di spostamento tra i due lati della faglia (zone rosse in figura). Il momento sismico calcolato è pari a 6.82E+20 Nm e la corrispondente magnitudo momento Mw risulta 7.86.

map_x_blog

Figura 1. Distribuzione del movimento sul piano di faglia, aftershock e terremoti storici. Sono mostrati i risultati della modellazione della distribuzione dello spostamento (slip) sul piano di faglia a partire dai dati geodetici (InSAR e GPS). L’area rettangolare reppresenta la proiezione in superficie del piano di faglia, mentre i colori mostrano l’entità dello spostamento (in metri) secondo la legenda in basso a sinistra. La stella rossa rappresenta l’epicentro della scossa principale del 25 Aprile (Mw 7.9), mentre i cerchi grigi indicano gli epicentri degli aftershock (le stelle grigie indicano quelli più forti (agg.to 13/05; fonte USGS). Sono inoltre mostrati i terremoti storici più significativi avvenuti nelle aree circostanti (simboli viola).

Ricordando che la faglia attivata il 25 aprile è il contatto tra la placca indiana che si infila sotto quella euroasiatica con una debole pendenza (~10°) verso nord, vediamo dalla figura 1 che il suo bordo meridionale coincide con il limite di tale contatto mappato in superficie dai geologi (la riga rossa con i triangolini indicata come Main Himalayan Thrust). La faglia si immerge verso nord Leggi il resto di questa voce

GPS e faglie attive: Daniele Cheloni premiato dall’Associazione per la Geofisica “Licio Cernobori”

L’Associazione per la Geofisica Licio Cernobori – AGLC, nata il 30 Ottobre del 2000 per ricordare Licio Cernobori, ricercatore dell’OGS prematuramente scomparso, ha come fine la promozione degli studi geofisici, e soprattutto la formazione scientifica e la crescita dei più giovani. Oltre all’attività didattica/divulgativa che i componenti dell’Associazione svolgono in diverse occasioni, sono stati finanziati negli anni diversi convegni, scuole, progetti, iniziative in Italia e all’estero. Dal 2010 l’Associazione ha istituito un premio per i giovani relatori al Congresso annuale GNGTS nell’ambito delle tre tematiche “Geodinamica”, “Caratterizzazione sismica del territorio” e “Geofisica Applicata”.

Quest’anno (2014), il vincitore per il Tema 1 “Geodinamica” è Daniele Cheloni dell’INGV, che è stato premiato nel corso dell’ultimo Convegno nazionale del GNGTS (Gruppo Nazionale di Geofisica per la Terra Solida) tenutosi a Bologna dal 25 al 27 novembre. Daniele è stato premiato per il lavoro “Interseismic coupling along the southern front of the Eastern Alps and implications for seismic hazard assessment in NE Italy”, nel quale documenta l’accumulo di deformazione lungo il fronte meridionale delle Alpi Orientali (NE dell’Italia) attraverso misure di geodesia spaziale (GPS) e discute il possibile contributo della deformazione asismica, la magnitudo e i tempi di ricorrenza dei forti terremoti necessari per bilanciare la deformazione attiva osservata, con interessanti implicazioni in termini di pericolosità sismica.

Gli attuali processi sismo-tettonici attivi dell’Italia nord-orientale sono dominati dalla convergenza della microplacca Adriatica rispetto a quella Eurasiatica, la quale si muove in senso antiorario ad una velocità di pochi millimetri all’anno (circa 1.5-2.0 mm/anno) rispetto a quella Eurasiatica stabile (Figura 1). Questo movimento viene quasi totalmente assorbito lungo il fronte meridionale delle Alpi Orientali, le quali rappresentano quindi il margine nord-orientale della zona di collisione, dove la microplacca Adriatica, andando a collidere contro la placca Eurasiatica stabile, si immerge al di sotto del fronte montuoso.

Figura 1: Schema sismotettonico dell'Italia nord-orientale. Le ellissi, con dimensione proporzionale alla magnitudo, indicano i terremoti più forti (M > 6) riportati nel Catalogo Parametrico dei Terremoti Italiani (CPTI11, Rovida et al., 2011), mentre le stelle bianche e le beach-balls mostrano la localizzazione del terremoto del Bosco del Cansiglio del 1936 (M 6.1) e della sequence sismica del Friuli del 1976 (M 6.4). Le linee rosso rappresentano invece le principali strutture tettoniche (faglie) attive. Infine, le freccie bianche indicano il movimento relativo della microplacca Adriatica rispetto alla placca Eurasiatica stabile, che avviene in senso antiorario con tassi di convergenza tra 1.5 e 2.0 mm/anno. (modificata da Cheloni et al., 2014 JGR – Solid Earth)

Figura 1: Schema sismotettonico dell’Italia nord-orientale. Le ellissi, con dimensione proporzionale alla magnitudo, indicano i terremoti più forti (M>6) riportati nel Catalogo Parametrico dei Terremoti Italiani (CPTI11, Rovida et al., 2011), mentre le stelle bianche mostrano la localizzazione del terremoto del Bosco del Cansiglio del 1936 (M 6.1) e della sequenza sismica del Friuli del 1976 (M 6.4); in bianco e rosso i meccanismi focali (beach-balls) relativi. Le linee rosse rappresentano invece le principali strutture tettoniche (faglie) attive. Infine, le frecce bianche indicano il movimento relativo della microplacca Adriatica rispetto alla placca Eurasiatica stabile, che avviene in senso antiorario (v. box in alto a sin.) con tassi di convergenza tra 1.5 e 2.0 mm/anno (fig. modificata da Cheloni et al., 2014)

Leggi il resto di questa voce

%d blogger hanno fatto clic su Mi Piace per questo: