Archivi Blog

DISS, ovvero il Database delle sorgenti sismogenetiche italiane

Il Database delle sorgenti sismogenetiche italiane (DISS Working Group, 2018) è un repository georiferito di informazioni di natura sismotettonica. Con il termine sismotettonica si intende il settore disciplinare che si interessa dei rapporti tra la geologia, la tettonica attiva e la sismicità di una data area, e che ha come obiettivo principale l’individuazione delle strutture che generano terremoti – le sorgenti sismogenetiche – e la stima del loro potenziale (per un approfondimento si veda un articolo recente di P. Vannoli e P. Burrato, pubblicato su Geologia dell’Ambiente).

Figura 1: Ultima versione (v. 3.2.1) del Database DISS accessibile online dalla pagina http://diss.rm.ingv.it/diss/

Perché “sorgenti sismogenetiche”? In cosa il Database delle sorgenti sismogenetiche italiane si differenzia da una normale mappa di faglie attive?

Leggi il resto di questa voce

Sequenza sismica in Italia centrale: scarpate di faglia prodotte dall’evento del 30 ottobre 2016

Il terremoto del 30 ottobre in Italia Centrale ha prodotto almeno 15 km di scarpata di faglia tra gli abitati di Arquata del Tronto e Ussita, in corrispondenza della intersezione del piano di faglia responsabile del terremoto e la superficie topografica. Questo spostamento cosismico (causato cioè dal terremoto e descritto anche in un altro articolo di questo blog) è comune per terremoti con magnitudo prossima o superiore a 6 e rappresenta la prosecuzione verso la superficie della rottura e dello scorrimento avvenuto sulla faglia in profondità.

scarpata_2016

Vista del versante occidentale del monte Vettore dove si notano due scarpate di faglia cosismiche prodotte dall’evento del 30 ottobre, una più in quota lungo il piano di faglia principale e una più in basso lungo una faglia minore.

Già dopo il terremoto del 24 agosto erano state osservate delle scarpate sul fianco del monte Vettore, ma erano ben più limitate (vedi porzione del sistema di faglia evidenziato nella mappa in verde – figura sotto), così come quelle segnalate più a nord che si estendono fino a Cupi e causate dal terremoto del 26 ottobre (vedi porzione del sistema di faglia evidenziato in mappa in arancione).

Mappa delle faglie attive (in rosso) note nell’area della sequenza sismica iniziata il 24 agosto. Le stelle in diverso colore indicano la localizzazione dei tre eventi principali della sequenza (24 agosto M 6.0, 26 ottobre M 5.9, 30 ottobre M 6.5). Le fasce colorate indicano i settori del sistema di faglia lungo i quali sono state prodotte rotture cosismiche in occasione dell’evento indicato con lo stesso colore (24 agosto in verde, 26 ottobre in arancione, 30 ottobre in rosa).

Le scarpate di faglia del 30 ottobre (vedi porzione del sistema di faglia evidenziato in mappa in rosa) sono molto evidenti e appaiono come un gradino nella topografia di entità variabile tra 20 e 70 cm, la loro localizzazione lungo la faglia geologica, unitamente alla loro geometria ed entità della deformazione sono del tutto consistenti con il movimento avvenuto in profondità che ha raggiunto picchi superiori a 2 m che hanno prodotto il ribassamento del settore occidentale rispetto a quello orientaleRibassamenti simili sono stati misurati anche elaborando i dati satellitari e tutte insieme queste osservazioni, effettuate sulla superficie terrestre, ci consentono di comprendere cosa è avvenuto in profondità e quindi di caratterizzare il terremoto e la sua faglia sismogenetica.

dsc_0066

Le rotture cosismiche non sono localizzate in modo casuale. Queste avvengono in corrispondenza di faglie geologiche attive che, nel caso di questa sequenza, formano il sistema Vettore-Porche-Bove già noto ai geologi italiani. Infatti i grandi terremoti rompono ripetutamente le stesse faglie e quelle estensionali provocano il ribassamento e il relativo sollevamento delle due porzioni di crosta separate dalla faglia. Il ripetersi di terremoti successivi lungo le stesse faglie porta all’accumularsi delle deformazioni di ciascun terremoto che è alla base della crescita delle montagne e dell’ampliamento dei bacini (es. Mt. Vettore-Piana di Castelluccio). Il terremoto è quindi una delle forze guida principali dell’evoluzione del paesaggio di questo bellissimo settore dell’Appennino centrale.

Anche durante il terremoto del 23 novembre in Irpinia si erano prodotte scarpate di faglia per circa 40 km tra Lioni e Sant’Angelo dei Lombardi, con scarpate alte fino a 120 cm.

In rosso la traccia della scarpata di faglia prodotta dal terremoto dell’Irpinia M6.9 del 1980

In rosso la traccia della scarpata di faglia prodotta dal terremoto dell’Irpinia del 23 novembre 1980 (Mw 6.8 secondo il CPTI15).

Scarpata di faglia del terremoto dell’Irpinia del 1980 sul monte Carpineta, qui il rigetto verticale ha raggiunto anche 120 cm.

Scarpata di faglia del 1980 attraverso la Piana di San Gregorio Magno, alla terminazione sud della rottura dove il rigetto verticale era di 20-40 cm.

Scarpata di faglia del terremoto dell’Irpinia del 1980 attraverso la Piana di San Gregorio Magno, alla terminazione sud della rottura dove il rigetto verticale era di 20-40 cm.

La dimensione della scarpata e, in particolare, la lunghezza e l’altezza sono proporzionali alla magnitudo del terremoto. Il grafico mostra che per una magnitudo 6.5 ci si può aspettare la formazione di scarpate lunghe una ventina di km e alte in media 40 cm, in accordo con quanto osservato per il terremoto del 30 ottobre.

Relazioni empiriche che legano la magnitudo del terremoto con la lunghezza della fagliazione in superficie e con l’altezza della scarpata media (dislocazione). La stella rossa è il terremoto del 30 ottobre 2016 (M 6.5) e quella blu è relativa al terremoto del 1980 (M 6.8).


Video del rilievo dei geologi del gruppo EMERGEO

I geologi del gruppo EMERGEO dell’Istituto Nazionale di Geofisica e Vulcanologia in collaborazione con i geologi di altre università e enti di ricerca hanno raggiunto il versante sud occidentale di Monte Bove Sud in corrispondenza dell’espressione di superficie della faglia responsabile del terremoto di magnitudo 6.5 del 30 ottobre scorso. È stata osservata la rottura cosismica primaria che presenta un rigetto di circa cinquanta centimetri, diretta espressione in superficie  del movimento del piano di faglia in profondità. La rottura cosismica individuata si localizza sul prolungamento del lineamento tettonico Monte Vettore-Monte Porche-Monte Bove attivatosi durante l’evento di magnitudo 6.5. Il gruppo EMERGEO sin dal 24 agosto è impegnato in rilievi di terreno atti ad identificare e caratterizzare, da un punto di vista geometrico e cinematico, i settori di faglia responsabili della sequenza sismica in corso.

a cura del Gruppo operativo EMERGEO (2016).


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

La GEOLOGIA dei terremoti: Faglie sismogenetiche cieche in Pianura Padana

Un recente studio pubblicato su Pure and Applied Geophysics censisce e classifica le faglie sismogenetiche cieche in Pianura Padana, riorganizzando le conoscenze esistenti alla luce dei terremoti emiliani del maggio 2012.

Il “paesaggio geologico” sepolto della Pianura Padana è molto articolato e complesso e possiamo immaginarlo costituito da vere e proprie montagne ammantate da gran di quantità di sedimenti di origine marina e fluviale. Questi sedimenti hanno spessori molto variabili, tra diverse migliaia di metri e poco più di 100 metri, e nascondono alla semplice osservazione le strutture tettoniche sottostanti, che possono però essere rilevate grazie alle numerose prospezioni geofisiche rese disponibili dall’esplorazione petrolifera a partire dal secondo dopoguerra.

La Pianura Padana rappresenta dunque un unicum geologico perché i suoi sedimenti nascondono la zona di contatto tra i thrust (termine per indicare le faglie con movimento di tipo inverso) delle Alpi Meridionali, a nord, e quelli dell’Appennino Settentrionale, a sud (Figura 1). In pratica entrambe queste catene montuose, che noi conosciamo e vediamo nella loro parte esposta, proseguono con delle porzioni sepolte che arrivano quasi a toccarsi nel sottosuolo padano.

Figura 1: Mappa strutturale semplificata della Pianura Padana. Linee nere: principali elementi tettonici; linee bianche: faglie ereditate; SAMF: fronte montuoso delle Alpi Meridionali; SAOA: arco esterno delle Alpi Meridionali; GS: Sistema delle Giudicarie; SVL: Schio-Vicenza; NAOA: arco esterno dell’Appennino Settentrionale; PTF: fronte pedeappenninico; MA: arco del Monferrato; EA: arco Emiliano; FRA: arco Ferrarese-Romagnolo.

Figura 1: Mappa strutturale semplificata della Pianura Padana. Linee nere: principali elementi tettonici; linee bianche: faglie ereditate; SAMF: fronte montuoso delle Alpi Meridionali; SAOA: arco esterno delle Alpi Meridionali; GS: Sistema delle Giudicarie; SVL: Schio-Vicenza; NAOA: arco esterno dell’Appennino Settentrionale; PTF: fronte pedeappenninico; MA: arco del Monferrato; EA: arco Emiliano; FRA: arco Ferrarese-Romagnolo.

Attraverso alcuni milioni di anni il progressivo moto di avvicinamento della Placca Africana  e della Placca Europea ha determinato prima la nascita delle Alpi e degli Appennini, attraverso il progressivo corrugamento di migliaia di metri di sedimenti originariamente deposti in un antico oceano noto come Tetide, sviluppatosi a partire da circa 250 milioni di anni fa tra il Permiano ed il Triassico inferiore; poi ne ha sollevato le porzioni assiali creando il paesaggio montuoso che oggi conosciamo, secondo un meccanismo ancora attivo alla velocità di 1-3 metri per millennio. L’avvicinamento di Alpi e Appennini secondo una direttrice circa N-S, e quindi il raccorciamento della Pianura Padana, è tuttora in atto, come mostrano i dati geodetici satellitari. In profondità questo raccorciamento si trasforma in uno sforzo di caricamento di faglie di tipo compressivo localizzate sia al piede delle Alpi Meridionali, sia al piede dell’Appennino Settentrionale. Leggi il resto di questa voce

SPECIALE Cinque anni dal terremoto dell’Aquila

Sono passati cinque anni dal terremoto del 6 aprile 2009. Come sempre, il nostro pensiero va anzitutto a coloro che con il terremoto hanno perso i loro cari e le loro case. Come ricercatori, abbiamo continuato gli studi della regione aquilana e delle aree limitrofe, con l’obiettivo di comprendere sempre meglio i meccanismi alla base dei terremoti e definire la pericolosità dell’area. I nostri studi, anche quelli che non sembrano avere ricadute immediate sulla riduzione del rischio sismico, contribuiscono a costruire, passo dopo passo, una maggiore conoscenza della Terra e dei processi deformativi che portano ai terremoti e ad aumentare la consapevolezza del fenomeno terremoto. In quest’ottica il 21 giugno 2013 è stata inaugurata la nuova sede INGV a L’Aquila e sono stati presentati i primi risultati del Progetto FIRB Abruzzo, frutto di un Accordo di Programma tra il Miur, la Regione Abruzzo e l’INGV.

In questo contributo riassumiamo alcune delle ricerche in corso, concentrandoci sugli aspetti della sismicità di questi anni, dell’identificazione, in superficie e in profondità, delle faglie attive e della risposta della geologia locale allo scuotimento sismico.

Analisi della sismicità

Nella figura sotto mostriamo la distribuzione spazio-temporale della sismicità nell’area aquilana dal 1 gennaio 2008 al 31 marzo 2014 (eventi di magnitudo ML maggiore o uguale a 2.0).

La sismicità nell'area aquilana dal 1 gennaio   2008 al 31 marzo 2014 (eventi di magnitudo ML maggiore o uguale a 2.0).  Questa animazione avanza mese per mese e mostra contemporaneamente tre mesi di sismicità e avanzano mese x mese.  La prima è più veloce (30 sec) la seconda è più lenta (1 m).

La sismicità nell’area aquilana dal 1 gennaio 2008 al 31 marzo 2014 (eventi di magnitudo ML maggiore o uguale a 2.0). Questa animazione avanza mese per mese e mostra contemporaneamente tre mesi di sismicità. Fonte dati: iside.rm.ingv.it

Tra gennaio e dicembre 2009 le nostre reti sismiche hanno registrato alcune decine di migliaia di terremoti nell’aquilano e grazie al catalogo di localizzazioni ad alta precisione è stata ricostruita con estremo dettaglio la geometria del sistema di faglie che si è attivato durante la sequenza sismica.

Tale catalogo, composto da più di 64 mila eventi sismici registrati nel 2009 da circa 70 stazioni sismiche è il più completo mai ottenuto per un terremoto di magnitudo moderata (i.e., M6) su faglie normali. Il catalogo è stato infatti ottenuto utilizzando procedure innovative di analisi automatica delle forme d’onda registrate per l’individuazione dei tempi di arrivo delle onde P ed S e per la localizzazione automatica ad alta precisione, con errori di localizzazione degli eventi estremamente piccoli, inferiori ai 50-100 m.

La mappa e le 20 sezioni verticali mostrano la distribuzione degli eventi sismici avvenuti nella zona aquilana prima dell'evento del 6 Aprile (foreshocks; pallini rossi in mappa) e dopo l'evento del 6 Aprile (aftershocks; pallini neri in mappa). Le stelle con diversi colori indicano gli eventi più forti della sequenza per i quali sono stati riportati anche i meccanismi focali. Inoltre, in mappa riportiamo le tracce delle porzioni della faglia che hanno prodotto rotture in superficie osservabili sul terreno (linee gialle), e le tracce delle 20 sezioni riportate nello slideshow (linee nere). Nelle 20 sezioni i simboli utilizzati sono uguali a quelli utilizzati nella mappa.

La mappa e le 20 sezioni verticali mostrano la distribuzione degli eventi sismici avvenuti nella zona aquilana prima dell’evento del 6 Aprile (foreshocks; pallini rossi) e dopo l’evento del 6 Aprile (aftershocks; pallini neri). Le stelle con diversi colori indicano gli eventi più forti della sequenza per i quali sono stati riportati anche i meccanismi focali. Inoltre, sono riportate le tracce delle porzioni di faglia che hanno prodotto rotture in superficie osservabili sul terreno (linee gialle). Le 20 sezioni lungo le linee nere numerate sono riportate di seguito, Valoroso et al., 2013.

Secondo questo studio, il sistema di faglie attivato è composto da due segmenti di faglia principali immergenti verso sudovest: la faglia dell’Aquila (o Paganica) a sud e la faglia di Campotosto a nord. Inoltre, nella fase finale della sequenza sismica si è attivato un cluster di sismicità, cioè una concentrazione di terremoti di bassa magnitudo nel settore nord del sistema di faglie, vicino a Cittareale. La lunghezza complessiva del sistema di faglie attivato, che si estende in direzione nordovest-sudest lungo gli Appennini, è di circa 50 km.

Le 4 sezioni verticali che seguono (1-4, in rosso nella mappa sopra) mostrano la distribuzione degli eventi sismici avvenuti nella zona aquilana lungo la porzione meridionale della faglia dell’Aquila. Leggi il resto di questa voce

Gli Speciali I terremoti del ’900: il terremoto del 23 novembre 1980

Il 23 novembre del 1980, alle ore 19:34, un forte terremoto (magnitudo 6.9) colpì una zona dell’Appennino Campano-Lucano, un’area estesa tra le province di Avellino, Salerno e Potenza.

macrosismica1980

Distribuzione degli effetti prodotti dal terremoto del 1980. L’area di danneggiamento si estende per quasi tutto il territorio campano, in Basilicata e in Puglia (Fonte: DBMI11). I comuni classificati con intensità MCS ≥ 6 sono 422, la maggior parte dei quali (303) in Campania, 55 in Basilicata e i restanti in Puglia e Molise. Sono 6 i comuni con intensità MCS pari a 10, nelle province di Avellino e Salerno e 9 i comuni con intensità MCS pari a 9 in provincia di Avellino.

 

Eravamo agli albori della Protezione Civile, e per avere un quadro di cosa fosse avvenuto si dovettero attendere giorni e giorni. Emblematico rimase il titolo del Mattino di Napoli del 26 novembre, tre giorni dopo il terremoto, con il grido FATE PRESTO in prima pagina. Quel titolo è diventato addirittura un’opera d’arte.

Andy Warhol: Fate presto

Andy Warhol: Fate Presto, 1981, Palazzo Reale di Caserta – Collezione Terrae Motus © 2011

Da allora molte cose sono cambiate per noi sismologi, sia per gli aspetti di sorveglianza sismica in Italia che delle conoscenze sui terremoti. Una ricostruzione degli aspetti normativi sulla pericolosità e sulla normativa si può trovare qui. Sembra che Leggi il resto di questa voce

%d blogger hanno fatto clic su Mi Piace per questo: