Archivi Blog

Un piccolo ma pericoloso meteotsunami nel Mediterraneo (Isole Baleari)

Il 16 luglio 2018 un meteotsunami ha colpito la costa tra le isole spagnole di Maiorca e Minorca, nell’arcipelago delle Baleari, provocando la morte di un turista tedesco trascinato dalla corrente mentre era in spiaggia, e causando notevoli danni lungo tutta la costa. Numerosi locali e attività commerciali sono stati allagati dall’onda e alcune imbarcazioni hanno rotto gli ormeggi per poi essere trascinati via, in balia delle forti correnti, come si vede nel video ripreso nei pressi del porto di Alcudia (Isola di Maiorca).

Le onde di tsunami sono state osservate dai mareografi delle Isole Baleari e del Mediterraneo occidentale. Interessante notare che il meteotsunami è stato rilevato dagli strumenti anche in Sardegna e in Corsica, come si vede nella figura in fondo.

Livello del mare al mareografo di Palma de Mallorca, registrato dall’11 al 17 luglio. Le oscillazioni a lungo periodo sono dovute alle maree, mentre le onde del meteotsunami sono evidenti a partire dal 16 luglio e durano diverse ore.

I meteotsunami sono anomalie del livello del mare causate da fenomeni atmosferici ad alta energia, come fronti temporaleschi, tempeste tropicali, forti dislivelli di pressione atmosferica, tornado etc. In particolari condizioni atmosferiche, le oscillazioni del livello del mare possono entrare in risonanza e produrre onde che hanno caratteristiche simili agli tsunami. In prossimità della costa, e in presenza di particolari condizioni topografiche come insenature o secche, possono avere effetti potenzialmente distruttivi come quello che ha colpito la costa delle isole Baleari. Abbiamo interpellato il nostro collega Mauricio González, dell’Instituto de Hidráulica Ambiental “IH Cantabria” (Universidad de Cantabria), esperto di questi fenomeni. Il dott. González ci ha spiegato che il fenomeno è molto frequente nel Mediterraneo occidentale a causa di oscillazioni della pressione atmosferica di provenienza africana: questi causano impulsi di pressione sulla superficie del mare, che a loro volta generano le onde. “Il problema delle Baleari,” dice il dott. González, “è che queste onde hanno una lunghezza pari a quella dei canali naturali di accesso a città come Ciudadela, nell’Isola di Minorca (figura sotto), e questo incrementa la loro ampiezza.”

Livello del mare osservato a Ciudadela (Isola di Minorca). Per la legenda vedere la figura precedente.

Per quanto rari e poco conosciuti in Italia, i meteotsunami sono relativamente più frequenti degli tsunami generati da terremoti, e in alcune parti del mondo – come i Grandi Laghi tra USA e Canada, alcune zone del Giappone e le stesse isole Baleari – accadono abbastanza spesso, tanto da essere identificati da specifiche parole nelle diverse lingue o dialetti.

In catalano, ad esempio, questo fenomeno è noto come risaga (o ressaca), parola che si associa all’improvviso ritiro delle acque o a forti correnti nei porti o nelle baie chiuse, come evidente in questo video ripreso a Alcudia (Isola di Maiorca).

Nelle Isole Baleari questo fenomeno si verifica talmente spesso che l’Agencia Estatal de Meteorología effettua un monitoraggio continuo dei dati atmosferici, e nel caso in cui la loro evoluzione sia compatibile con questo tipo di fenomeni può lanciare un messaggio d’allerta rapida, come avviene per l’allertamento da tsunami di origine sismica. Il giorno precedente era stata emessa un’allerta gialla (probabilità di evento), e la mattina stessa il livello d’allerta era salito all’allerta arancione (rischio molto alto).

Negli ultimi decenni si sono verificati numerosi episodi di questo tipo, alcuni dei quali hanno riguardato proprio la stessa zona colpita ieri. Già nel 1997 vi erano stati due episodi simili, ma di limitata entità. Nella serata del 15 giugno 2006 un meteotsunami simile a quello di ieri, ma di dimensioni maggiori, ha colpito il porto di Ciudadela, sull’isola di Minorca. Secondo quanto riportato da numerosi testimoni, il livello dell’acqua nel porto si è abbassato di quasi quattro metri (onda negativa), generando correnti velocissime (fino a 4 metri al secondo), che hanno affondato trentacinque imbarcazioni danneggiandone seriamente altre cento.

Benché i meteotsunami non siano causati da terremoti (pertanto non rientrano nelle attività di monitoraggio del Centro Allerta Tsunami dell’INGV), le caratteristiche fisiche e  di conseguenza l’impatto di un meteotsunami può essere molto simile a quello di uno tsunami. Entrambi possono manifestarsi come onde relativamente basse ma con periodo molto lungo, in grado di inondare ampi tratti di costa bassa e di generare forti correnti. Gli tsunami di origine sismica possono però raggiungere altezze ed estensione dell’area colpita molto superiori, quando la magnitudo del terremoto è molto alta (in generale superiore a 7).

Variazioni del livello del mare osservate dal mareografo di Carloforte in Sardegna (Rete Mareografica Nazionale (RMN) gestita dall’ISPRA). Si notano le variazioni lunghe dovute alla marea e quelle a più alta frequenza nelle prime ore del 16 luglio.

Raccomandiamo pertanto di porre sempre la massima attenzione ai repentini cambiamenti nel livello del mare, soprattutto quando si verifica un improvviso ritiro delle acque, ricordando che le onde negative sono sempre seguite dal ritorno delle acque. Quale che sia la causa di queste anomalie, il pericolo è sempre molto alto per via delle potenti e veloci correnti che possono generarsi e che sono in grado di trascinare via sia persone adulte (com’è accaduto alle Baleari) che bambini.

A cura del Centro Allerta Tsunami dell’INGV.


Bibliografia

Vilibić, I., Monserrat, S., Rabinovich, A., & Mihanović, H. (2008). Numerical modelling of the destructive meteotsunami of 15 June, 2006 on the coast of the Balearic Islands. Pure and Applied geophysics, 165(11-12), 2169-2195.

Grezio, et al. (2017). Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Reviews of Geophysics, 55(4), 1158-1198.

Šepić, J., & Rabinovich, A. B. (2014). Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012. In Meteorological Tsunamis: The US East Coast and Other Coastal Regions (pp. 75-107). Springer, Cham.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Il CAT-INGV al Simposio internazionale sugli tsunami all’UNESCO, Parigi, 12-14 febbraio 2018

Si è concluso l’International Symposium “Advances in Tsunami Warning to Enhance Community Responses” tenutosi a Parigi dal 12 al 14 febbraio 2018. Questo importante convegno, organizzato dall’Intergovernmental Oceanographic Commission (IOC) dell UNESCO, aveva come scopo principale quello di migliorare la gestione del rischio tsunami e quindi la sicurezza dei cittadini che vivono sulle coste.

Il primo di questi incontri si è tenuto tredici anni fa, nel marzo del 2005, a seguito del grande tsunami di Sumatra del 26 Dicembre 2004, che ha causato la morte di almeno 280.000 persone su tutte le coste dell’Oceano Indiano, fino al Sud Africa. Dopo quell’evento catastrofico, grazie all’impegno dell’UNESCO, delle istituzioni scientifiche e delle organizzazioni di Protezione Civile sono stati fatti rilevanti passi avanti, sia dal punto di vista della conoscenza che della capacità di salvare vite umane.

Nella tre giorni parigina i maggiori esperti di tsunami del mondo si sono riuniti nella sede dell’UNESCO per confrontarsi sulle strategie di difesa dagli tsunami, facendo il punto sulle lezioni apprese dagli eventi del passato, illustrando gli avanzamenti della conoscenza scientifica e confrontandosi sulle migliori pratiche da adottare per rendere l’allerta sempre più veloce e precisa, allo scopo di raggiungere tutti i cittadini migliorando la loro capacità di affrontare gli tsunami e di salvare le proprie vite e quelle dei loro cari. Leggi il resto di questa voce

Terremoto al largo dell’Alaska, 23 gennaio 2018

Oggi, alle ore 10.31 italiane, un forte terremoto si è verificato al largo dell’isola di Kodiak, 300 km a sud–est dalle coste dell’Alaska. Il Centro Allerta Tsunami (CAT) dell’INGV ha stimato, pochi minuti dopo l’evento, una magnitudo pari a 7.6.

Mappa epicentrale del terremoto di questa mattina al largo dell’Alaska. La stella rappresenta l’epicentro del terremoto di magnitudo 7.6 avvenuto alle ore 10:31 ora italiana.

A seguito della forte scossa, il Pacific Tsunami Warning Center (PTWC) ha diramato un’allerta tsunami per le coste del Pacifico Settentrionale e delle Hawaii. Successivamente, dopo l’osservazione dei dati di boe e mareografi nelle regioni del nord Pacifico, l’allerta è stata cancellata. In caso di forti terremoti crostali Leggi il resto di questa voce

Il Centro Allerta Tsunami e l’esercitazione NEAMWave17

Il 2 novembre 2017 si è svolta in Italia l’esercitazione internazionale sul rischio tsunami NEAMWave17, che tra il 31 ottobre e il 3 novembre ha interessato la regione denominata NEAM (Atlantico nord-orientale, Mediterraneo, Mar di Marmara e Mar Nero). L’esercitazione, la terza organizzata dalla International Oceanographic Commission (IOC) dell’Unesco, aveva l’obiettivo di testare le capacità operative del sistema di allertamento maremoti nella regione, di coinvolgere gli Stati membri e soprattutto di migliorare la capacità di affrontare il rischio tsunami.

L’esercitazione prevedeva quattro differenti scenari simulati, che hanno interessato, in giorni diversi, tre aree del Mediterraneo e un’area dell’Atlantico nord-orientale. Sono stati coinvolti quattro Tsunami Service Provider: il CENALT (CENtre d’ALerte aux Tsunamis, Francia), il NOA (National Observatory of Athens, Grecia), il CAT (Centro Allerta Tsunami dell’Istituto Nazionale di Geofisica e Vulcanologia, Italia), il KOERI (Kandilli Observatory and Earthquake Research Institute, Turchia), e l’IPMA (Instituto Português do Mar e da Atmosfera, Portogallo), candidato come Tsunami Service Provider per il Portogallo. Il CAT-INGV è stato di recente accreditato come Tsunami Service Provider per il Mediterraneo.

Per il CAT e il NOA, quella del 2 novembre è stata la prima esercitazione congiunta, con uno scenario che ha interessato non solo i mari italiani ma l’intero Mediterraneo. La simulazione, che ha consentito di testare per la prima volta il Sistema italiano di Allertamento Maremoti (SiAM), si è basata su una ipotetica scossa di terremoto di magnitudo 8.5, con epicentro a sud dell’isola di Zante, nel segmento occidentale dell’Arco Ellenico. L’esercitazione prevedeva il coordinamento dei diversi attori del Sistema italiano di Allerta Maremoti, istituito ufficialmente nello scorso mese di giugno. L’analisi del potenziale tsunamigenico del terremoto simulato è stata effettuata dal Centro Allerta Tsunami dell’INGV, che ha anche effettuato in tempo reale il monitoraggio dei dati mareografici rilevati dall’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), mentre il Dipartimento della Protezione Civile si è occupato delle procedure di valutazione e allertamento delle Sale Operative Regionali e di alcuni Comuni.

Simulazione della propagazione della prima onda di tsunami durante l'esercitazione NEAMWave17

Simulazione della propagazione dello tsunami durante l’esercitazione NEAMWave17. Le isolinee rappresentano i tempi di arrivo della prima onda di tsunami (legenda a destra)

Nel corso dell’esercitazione NEAMWave17, dopo una valutazione dei dati sull’ipotetico evento sismico, il Centro Allerta Tsunami ha emesso un’allerta WATCH (livello massimo) che, immediatamente rilanciata dal Dipartimento della Protezione Civile, ha inviato una serie di messaggi ai funzionari delle Sale Operative Regionali e ai sindaci di dodici amministrazioni comunali delle Regioni maggiormente interessate dallo scenario: Nova Siri, Policoro e Scansano Ionico in Basilicata; Soverato, Catanzaro e Rossano in Calabria; Lecce, Gallipoli e Castellaneta in Puglia, per segnalare la possibilità di un evento imminente, in grado di interessare le aree costiere.

In una situazione reale, il primo messaggio di allerta verrebbe emanato dal CAT in base ai soli parametri del terremoto quali la magnitudo, la distanza della sorgente sismica dalla costa e la profondità dell’ipocentro. Se, nei minuti successivi, l’analisi dei dati delle reti mareografiche del Mediterraneo evidenziasse delle anomalie del livello del mare, verrebbero diramati successivi messaggi di allerta. Nel caso in cui i dati non dovessero confermare l’arrivo dell’onda, l’allerta verrebbe cancellata.

Gli tsunami possono essere causati da terremoti, frane o eruzioni vulcaniche e sono generalmente formati da una serie di lunghe onde che si propagano in mare aperto a velocità di centinaia di chilometri orari e che possono inondare vaste aree dell’entroterra costiero (vedi video Tsunami).

Nel caso degli tsunami generati dai terremoti, che sono di gran lunga i più frequenti e gli unici attualmente monitorati dal CAT-INGV, l’altezza e l’energia delle onde sono proporzionali all’estensione e allo spostamento verticale della faglia sottomarina interessata. É certamente utile sapere che questo fenomeno in alcuni casi è preceduto da un ritiro del mare per decine di metri, che la propagazione di queste onde può durare per ore e che la prima onda ad abbattersi sulle coste non sempre è la più distruttiva.

Nello scenario di NEAMWave17, il terremoto avrebbe provocato uno tsunami in grado di colpire numerose località lungo le coste del Mediterraneo e in modo particolare le coste della Grecia Ionica, della Libia e quelle di Puglia, Basilicata, Calabria e Sicilia Sud-Orientale. In conseguenza dell’elevata velocità di propagazione dell’onda nelle profonde acque dello Ionio, il tempo di arrivo delle prime onde sulle coste italiane più vicine sarebbe stato di circa 20 minuti dal terremoto. L’area selezionata per la simulazione, il segmento occidentale dell’arco ellenico, è ben nota ai sismologi, coincide con un’importante zona di subduzione, e si caratterizza per l’elevata sismicità. In passato, terremoti avvenuti lungo la stessa struttura geologica hanno già dato luogo a imponenti tsunami, come quello verificatosi all’alba del 21 Luglio del 365 d.C. in una zona a sud-ovest di Creta.

In quel caso il terremoto, di magnitudo stimata superiore a 8, ha generato uno tsunami in grado di spazzare tutte le coste del Mediterraneo dall’Algeria alla Siria, distruggendo Alessandria d’Egitto, invadendo l’intero delta del Nilo e provocando gravi danni a Creta, Cipro, nella Grecia continentale, in Libia, nella Sicilia Orientale e persino nel Mar Adriatico (Stiros, 2001). Fenomeni di questo tipo si verificano con una certa frequenza anche nell’area del Mediterraneo, non sempre con proporzioni catastrofiche come quello del 365 d.C. ma non per questo innocui. Ad oggi il Catalogo degli Tsunami Euro-Mediterranei (EMTC), basato su fonti storiche, conta 290 eventi, tra cui il terribile tsunami che ha fatto seguito al terremoto di Reggio Calabria e Messina del 1908, causando migliaia di morti (Maramai, Brizuela e Graziani, 2014).

Ma non si tratta soltanto di eventi eccezionali accaduti in tempi lontani. Nei soli ultimi due anni il CAT-INGV ha monitorato cinque forti terremoti nel Mediterraneo, quattro dei quali hanno generato dei piccoli tsunami locali, inviando le prime allerte al Dipartimento della Protezione Civile in tempi compresi tra 9 e 12 minuti dal tempo origine dell’evento sismico.

Tempo origine (UTC) Regione Mag USGS Mag rapida  CAT Livello di allerta Tempo del  messaggio UTC (minuti dal tempo origine)

16/04/15

18:07

Crete (Greece)    6.4 6.4 Watch 18:16       (9’)

17/11/15

07:10

Ionian (Greece) 6.5 6.5 Advisory 07:22      (12’)

25/01/16

04:22

Gibraltar 6.5 6.5 Advisory 04:33      (11’)

12/6/17

12:28

Greece-Turkey 6.4 6.5 Advisory    12:38      (10’)
20/7/17

22:31

Turkey-Greece 6.6 6.8 Watch 22:41      (10’)

L’ultimo evento rilevato risale al 21 luglio 2017, quando un terremoto di magnitudo 6.7 avvenuto nell’arcipelago del Dodecaneso, e più precisamente nel tratto di mare prospiciente Kos (Grecia) e Bodrum (Turchia) ha generato uno tsunami relativamente piccolo, con onde che localmente hanno raggiunto la quota topografica di 1.5 metri rispetto al livello del mare (Yalçiner et al. 2017). In quell’occasione, in dieci minuti il Centro Allerta Tsunami aveva già calcolato i parametri del terremoto e lanciato la prima allerta, come descritto qui.

Uno degli obiettivi di questo tipo di esercitazioni consiste, per l’appunto, nel testare la creazione, l’invio e la ricezione dei messaggi di allerta da parte dei componenti del SiAM e degli Enti locali e, per quanto possibile, di simulare operativamente le azioni conseguenti, verificando anche i tempi necessari per le azioni di mitigazione dell’impatto sulle coste interessate. In quest’ottica, è stato istituito a livello internazionale lo Tsunami Awareness Day (Giornata della consapevolezza degli tsunami), che si tiene il 5 novembre 2017, in ricordo del grande tsunami che colpì il Giappone nel 1854.


Riferimenti bibliografici

Comunicato Stampa INGV del 3 novembre 2017

Maramai A., Brizuela B., Graziani L. (2014). The Euro-Mediterranean Tsunami Catalogue, Annals of Geophysics, 57, 4, S0435.

Stiros, S. C. (2001). The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. Journal of Structural Geology, 23(2), 545-562.

Yalçıner, A., Annunziato, A., Papadopoulos, G., Güney-Doğan, G., Gökhan-Güler, H., Eray- Cakir, T., Özer-Sözdinler, C., Ulutaş, E., Arikawa, T., Süzen, L., Kanoğlu, U., Güler, I., Probst, P., Synolakis, C. (2017). The 20th July 2017 (22:31 UTC) Bodrum-Kos Earthquake and Tsunami: Post Tsunami Field Survey Report, http://users.metu.edu.tr/yalciner/july-21-2017-tsunami-report/Report-Field-Survey-of-July- 20-2017-Bodrum-Kos-Tsunami.pdf.

Terremoto M8.0 al largo del Messico del 8 settembre ore 06:49 italiane

Un terremoto di magnitudo 8.0 è avvenuto questa mattina, 8 settembre 2017 alle ore 6:49 italiane, al largo delle coste pacifiche del Messico.

Localizzazione del terremoto di magnitudo 8.0 avvenuto questa mattina, 8 settembre 2017 alle ore 6:49 italiane, al largo delle coste pacifiche del Messico.

I dati ricevuti in tempo reale nella sala di monitoraggio sismico dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) hanno permesso di localizzare l’evento: epicentro in mare, vicino alla costa di Chiapas, Mexico, con coordinate geografiche (lat, lon) 15.13-93.69 ad una profondità di 72 km.

Sismogramma del terremoto di magnitudo 8.0 avvenuto questa mattina, 8 settembre 2017 alle ore 6:49 italiane, al largo delle coste pacifiche del Messico. Stazione BRMO (Bormio, SO) della Rete Sismica Nazionale.

Il terremoto si è verificato in una regione sismicamente molto attiva, dove i terremoti sono frequenti a causa dello scorrimento della placca oceanica di Cocos sotto le placche del Nord America e dei Caraibi.

Sismicità della regione centroamericana. I terremoti come quello odierno avvengono per il movimento della placca di Cocos che si inflette e scivola al di sotto della placca nordamericana e di quella caraibica. Gli epicentri in rosso rappresentano i terremoti più superficiali, mentre quelli in verde, che avvengono all’interno del Messico e del Guatemala, sono più profondi.

A causa della elevata magnitudo e delle caratteristiche del terremoto, pochi minuti dopo l’evento è stato lanciata l’allerta tsunami per il Messico e per gli stati confinanti. In effetti sono state poi rilevate delle onde di tsunami alle stazioni mareografiche messicane. La figura sotto mostra le oscillazioni del livello del mare misurato al mareografo di Salina Cruz, dove si sono rilevate variazioni di circa 1 metro rispetto al livello medio del mare.

Oscillazioni del livello del mare misurate alla stazione mareografica di Salina Cruz, Mexico. L’onda lunga è dovuta alla marea. Si può notare l’arrivo dell’onda di tsunami intorno alle ore 05:15 con un periodo dell’onda di circa 35 minuti. L’oscillazione di lungo periodo ben visibile prima dell’arrivo dello tsunami è dovuta alla marea.

Il Centro Allerta Tsunami (CAT) dell’INGV, responsabile per il monitoraggio degli tsunami sismo-indotti nel Mediterraneo, analizza i dati sismici e del livello del mare in tutto il mondo. Pur non inviando le relative allerte agli organismi internazionali per eventi fuori dalla regione mediterranea, effettua ugualmente le analisi a scala globale a scopo di esercitazione.

La simulazione dei livelli di allerta per la regione interessata, fornita dal CAT pochi minuti dopo l’evento.

Nel caso del terremoto del Messico il CAT ha stimato tempestivamente la magnitudo (M8) e simulato l’invio dell’allerta molto circa 9 minuti dopo l’evento. Le mappe sotto mostrano la simulazione dei livelli di allerta per la regione interessata, fornita dal CAT pochi minuti dopo l’evento.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

%d blogger hanno fatto clic su Mi Piace per questo: