Archivi Blog

Il 12 e 13 ottobre la nona edizione di Io Non Rischio

EGNd2fVXYAEm169

Il 12 e 13 ottobre 2019 in centinaia di piazze italiane torna la campagna nazionale di comunicazione “Io Non Rischio”, giunta alla sua nona edizione.  Migliaia di volontari di associazioni di protezione civile, dopo aver seguito, nei mesi scorsi, un percorso formativo comune, coordinato dalle rispettive Regioni e realizzato da una rete di “formatori” esperti, anch’essi volontari, saranno presenti nelle loro realtà locali per sensibilizzare i cittadini sui rischi naturali presenti sul territorio e renderli responsabili e attivi nella riduzione di tali rischi.

Insieme ai consueti punti informativi nelle piazze, in molte realtà saranno organizzate iniziative collaterali, in particolare veri e propri percorsi di trekking urbano, alla scoperta delle tracce dei rischi che caratterizzano il territorio.

Lo slogan che identifica la campagna “Io Non Rischio” è l’affermazione di un proposito ben preciso, è una dichiarazione di intenti che ogni cittadino e ogni comunità può fare come parte attiva del Servizio Nazionale di Protezione Civile, così come previsto dal nuovo “Codice”.

I temi affrontati dalla campagna, oltre a quelli ormai consolidati (terremoto, maremoto, alluvione), si arricchiscono quest’anno del rischio vulcanico in una versione sperimentale per l’area flegrea – che sarà realizzata sabato 19 ottobre -, in occasione dell’esercitazione nazionale “Exe Flegrei 2019” prevista dal 16 al 20 ottobre.

Volontari della Campania “a lezione” di Io non rischio Vulcano Campi Flegrei in vista dell’esercitazione

La campagna IO NON RISCHIO, che quest’anno apre la “Settimana della Protezione Civile”, è promossa dal Dipartimento di Protezione Civile, da INGV – Istituto Nazionale di Geofisica e Vulcanologia, ANPAS – Associazione Nazione delle Pubbliche Assistenze, Fondazione CIMA e ReLUIS – Rete dei Laboratori Universitari di Ingegneria Sismicaed è realizzata in collaborazione con Regioni e Comuni.

L’INGV, come promotore  e partner scientifico della campagna, ha contribuito e contribuisce attivamente alla ideazione e produzione dei materiali di comunicazione, alla formazione dei volontari che vanno in piazza sui rischi terremoto e maremoto (da quest’anno anche sul rischio vulcanico) – fornendo direttamente alle associazioni spunti e materiali per la progettazione degli allestimenti di piazza –  e a tutte le numerose attività di comunicazione, tra le quali lo sviluppo delle mappe interattive per il portale www.iononrischio.it.

L’elenco delle centinaia di piazze italiane interessate dall’evento il prossimo 12 e 13 ottobre è disponibile – in costante aggiornamento – sulla pagina web ufficiale della campagna dove è disponibile ulteriore materiale informativo.

Per promuovere e sostenere l’iniziativa attraverso i social si possono utilizzare gli hashtag ufficiali della campagna per il 2019: #iononrischio e #iononrischio2019.

social

Il terremoto del 7 ottobre 2019, Mw 4.0 in provincia di Catanzaro: approfondimento geologico

Il terremoto del 7 ottobre 2019, Mw 4.0, si è verificato circa 10 km ad ovest della città di Catanzaro ad una profondità di 27 km, nel contesto della zona di subduzione dell’Arco Calabro (Figura 1).

Fig_1_PostEQ07102019.jpg

Figura 1: La stella rossa rappresenta l’epicentro del terremoto del 7 ottobre 2019, Mw 4.0, nel contesto della subduzione dell’Arco Calabro. Il piano di subduzione è rappresentato con isolinee di profondità (il valore di profondità è indicato in bianco), è tratto da DISS v. 3.2.1 (DISS Working Group, 2018; http://diss.rm.ingv.it/diss/, il Database delle sorgenti sismogenetiche italiane è descritto in questo articolo del blog) e visualizzato attraverso Google Earth.

La subduzione è un processo che si instaura lungo il margine tra due placche che convergono, per cui una delle due scorre sotto l’altra, sprofondando nel mantello sottostante. La subduzione dell’Arco Calabro è il risultato della convergenza tra la placca euroasiatica -a nord- e la placca africana – a sud. Le misure geodetiche confermano che questo movimento relativo avviene ad una velocità di alcuni millimetri ogni anno.

Il processo di subduzione (ossia di immersione nel mantello terrestre) di crosta oceanica ionica (africana) al di sotto della placca euroasiatica è iniziato circa 80 milioni di anni fa ed è attualmente ancora in corso nella porzione dell’Arco Calabro compresa tra la Stretta di Catanzaro e lo Stretto di Messina, causando l’arretramento verso sud-est dell’Arco Calabro. La crosta oceanica subdotta (slab) raggiunge una profondità di circa 600 km. I terremoti che avvengono all’interno dello slab permettono di delinearne approssimativamente la geometria, rappresentata attraverso linee di uguale profondità in Figura 1. Per un approfondimento sulla sismicità profonda dell’Arco Calabro è possibile leggere questo post e vedere il video:

Studi recenti hanno definito la geometria dell’interfaccia tra le due placche e le principali caratteristiche della placca in subduzione (vedi Neri et al., 2009; Maesano et al., 2017 e bibliografia relativa). 

L’insieme dei processi geodinamici in atto nella zona di subduzione controlla la sismotettonica dell’area, cioè l’insieme dei processi dovuti all’interazione tra la tettonica attiva e la sismicità.

In generale, nelle zone di subduzione si possono verificare diversi tipi di terremoti in funzione della posizione in cui avvengono rispetto alla subduzione stessa (Figura 2). Avremo quindi terremoti caratterizzati da cinematica inversa sia sull’interfaccia al contatto tra le due placche che sulle faglie che si propagano all’interno della placca superiore partendo dall’interfaccia in prossimità del margine (dette megasplays). All’interno della placca superiore avremo invece terremoti caratterizzati da cinematica normale ed eventualmente anche trascorrente.  Anche la placca subdotta è sottoposta a forze che generano terremoti (detti intra-slab) con cinematica variabile in funzione di profondità e posizione relativa.

Considerando l’intera storia sismica italiana a nostra disposizione, la Calabria è stata interessata da alcuni dei terremoti più forti, le cui faglie responsabili sono spesso poco evidenti nella geologia di superficie o addirittura cieche (che non intersecano la superficie topografica). Sebbene molte faglie siano state individuate come sorgenti sismogenetiche di forti terremoti, ad oggi è possibile che in questa regione alcune faglie attive e responsabili di forti terremoti storici possano non essere state ancora identificate (vedi Tiberti et al., 2017). 

Figura 2: In alto, rappresentazione schematica di una zona di subduzione (modificata da Doglioni et al., 1999). In basso, schema della subduzione in Calabria, con la posizione delle tipologie di sorgenti sismogenetiche note (A1 e A2 faglie normali, B faglie inverse).  La stella rossa rappresenta l’epicentro del terremoto del 7 ottobre 2019. Figura modificata da Tiberti et al., 2017.

Torniamo al terremoto del 7 ottobre. Il meccanismo focale calcolato indica che si tratta di un terremoto generato da una faglia con cinematica normale. Sappiamo che le faglie normali si collocano agevolmente nel contesto generale della sismicità presente nelle zone di subduzione. Considerando le incertezze relative alla posizione dell’interfaccia di subduzione, possiamo collocare la faglia responsabile del terremoto del 7 ottobre sia all’interno della placca superiore, sia all’interno dello slab subdotto (Figura 2).

a cura di Paola Vannoli e Mara Tiberti, INGV-Roma1.


Bibliografia

DISS Working Group (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia; doi:10.6092/INGV.IT-DISS3.2.1.

Doglioni C., P. Harabaglia, S. Merlini, F. Mongelli, A. Peccerillo, C. Piromallo (1999). Orogens and slabs vs. their direction of subduction. Earth-Sci. Rev., 45, 167-208.

Maesano F.E., M.M. Tiberti, R. Basili (2017). The Calabrian Arc: three-dimensional modelling of the subduction interface. Scientific reports, 7, 8887, doi:10.1038/s41598-017-09074-8.

Neri G., B. Orecchio, C. Totaro, G. Falcone, D. Presti (2009). Subduction Beneath Southern Italy Close the Ending: Results from Seismic Tomography. Seismological Research Letters, 80, 63-70, doi:10.1785/gssrl.80.1.63.

Tiberti M.M., P. Vannoli, U. Fracassi, P. Burrato, V. Kastelic, G. Valensise (2017). Understanding seismogenic processes in the Southern Calabrian Arc: a geodynamic perspective. Ital. J. Geosci., 136, 3, 365-388, doi:10.3301/IJG.2016.12.

Evento sismico del 7 ottobre 2019, Ml 4.0 (Mw 4.0), in provincia di Catanzaro

Alle ore 08:11 italiane del 7 ottobre 2019 un evento sismico di magnitudo Ml 4.0 (Mw 4.0) è stato localizzato dalla Rete Sismica Nazionale dell’INGV 2 km a nord-ovest di Caraffa di Catanzaro in provincia di Catanzaro ad una profondità di 27 chilometri.

UE_Strumentale2_23231121.jpg

La localizzazione dell’evento di magnitudo Ml 4.0 alle ore 8:11. In giallo la sismicità dal 1 gennaio 2018.

L’evento è stato localizzato nella provincia di Catanzaro nelle vicinanze dei comuni di Caraffa, Settingiano e Marcellinara. Nella successiva tabella sono elencati i comuni con una distanza inferiore a 10 km dall’epicentro.

L’area interessata dall’evento sismico di questa mattina è considerata a pericolosità sismica molto alta, come è mostrato dal modello di pericolosità per il territorio nazionale.

UE_Pericolosita_23231121.jpg

La sismicità storica dell’area riporta in questa area diversi eventi sismici di elevata magnitudo. Dalla mappa dei terremoti del passato estratti dal Catalogo Parametrico dei Terremoti Italiani (CPTI15) si evidenzia che il terremoto del 4 aprile 1626, di magnitudo stimata Mw 6.1, con un epicentro leggermente più a sud di quello odierno, abbia danneggiato fortemente i comuni di Girifalco (grado X della scala MCS) e Caraffa di Catanzaro (grado IX della scala MCS).

UE_Storica2_23231121.jpg

La zona è stata anche interessata dalla lunga sequenza di terremoti che nel 1783 per alcuni mesi interessò quasi tutta la Calabria, da Sud a Nord ed in particolare da quello del 28 marzo (con magnitudo Mw stimata 7.0) causò danni catastrofici fino al grado XI della scala MCS.

CPTI15-DBMI15_17830328_1855_000.jpg

Distribuzione degli effetti prodotti dal terremoto del 28 marzo 1783. Fu l’ultima delle grandi scosse della sequenza sismica calabro-messinese del 1783 e, quanto ad ampiezza dell’area colpita, gravità degli effetti e ad estensione dell’area di risentimento, fu simile alla scossa del 5 febbraio; questo terremoto, infatti, fu avvertito in un’area enorme, estesa a tutta l’Italia meridionale, dalla Sicilia a Napoli, alla Puglia meridionale; all’interno della zona epicentrale ebbe effetti catastrofici, valutabili fino al grado XI della scala MCS (Fonte: CPTI15-DBMI15).

Il terremoto avvenuto oggi, secondo i dati accelerometrici disponibili al momento, ha fatto registrare accelerazioni che corrispondono ad un’intensità strumentale su terreno roccioso fino al IV grado della scala MCS. 

intensity.jpg

Simile risentimento si evince dalla Mappa del risentimento sismico in scala MCS elaborata a partire da 266 questionari online (aggiornato alle 9:13) dal sito www.haisentitoilterremoto.it.  La mappa aggiornata dei risentimenti è disponibile al seguente LINK.

23231121_mcs.jpg

Mappa del risentimento sismico in scala MCS che mostra la distribuzione degli effetti del terremoto (secondo la legenda colorata) sul territorio come ricostruito dai questionari on line. Con la stella viene indicato l’epicentro del terremoto, i cerchi colorati si riferiscono alle intensità associate a ogni comune. Viene inoltre indicato il numero dei questionari elaborati per ottenere la mappa stessa.

Al momento (ore 9:30) si registrano altre 4 scosse nella zona, la cui magnitudo è pari o inferiore a 2. Il terremoto è stato preceduto da un evento di magnitudo 1.5 avvenuto alle 6:47. Per ulteriori informazioni: http://terremoti.ingv.it/ 


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

L’osservatorio della Faglia Alto-Tiberina – The Alto Tiberina Near Fault Observatory (TABOO)

TABOO è un osservatorio geofisico dell’INGV a carattere multidisciplinare, progettato per lo studio dei processi di deformazione attivi lungo un sistema di faglie estensionali dell’Appennino Settentrionale e dei processi di preparazione dei terremoti.

Le faglie sono complessi sistemi naturali le cui proprietà meccaniche evolvono nel tempo. La raccolta di dati ad alta risoluzione spaziale e temporale, provenienti da diverse discipline, è quindi lo strumento principale per la descrizione e la modellazione dei processi chimico-fisici che a differenti scale controllano il processo di fagliazione e, verosimilmente, di genesi dei terremoti. Per queste ragioni, sin dal 2010 l’INGV ha investito risorse finanziare e umane nella creazione di un’infrastruttura di ricerca che attraverso un monitoraggio permanente, di dettaglio e multi-parametrico di un sistema di faglie attive, potesse consentire di affrontare aspetti fondamentali della tettonica e della fisica della sorgente sismica (Fig. 1).

Figura 1. Mappa dell’area di studio (da Chiaraluce et al., 2014a). Sx) Rete multidisciplinare TABOO; vedi legenda per significato simboli. In rosso la zona di emersione dell’ATF. Il riquadro al centro è uno zoom dell’area quadrata identificata in mappa con la linea nera, con schematizzata la distribuzione dei 3 siti dove durante il progetto GLASS sono stati perforati pozzi superficiali 200-250 m, nei quali sono stati installati sensori sismici (Collettini and Chiaraluce, 2013; Chiaraluce et al., 2014b). Dx) I quadrati rossi rappresentano gli epicentri macrosismici dei principali terremoti storici dall’anno 1000 in poi. Ricordiamo che nel catalogo storico non ci sono eventi sismici che possono essere messi in relazione diretta all’attivazione di tutta la faglia ATF (M7). Mentre i punti neri sono gli epicentri strumentali dei terremoti avvenuti nel periodo 1995-2010 (da ISIDE). I meccanismi focali in blu sono riferiti agli eventi sismici con magnitudo M>5, mentre gli altri sono degli eventi con magnitudo 2.9<ML<3.2.

Il sistema di faglie monitorato è quello dell’Alta Valle del Tevere, dominato in profondità dalla presenza di una grande faglia normale a basso angolo d’immersione (15°-20°), nota in bibliografia con il nome di Faglia Alto Tiberina (ATF; Fig. 2). L’ATF è una faglia che per le sue dimensioni (60 x 30 km) potrebbe generare un forte terremoto, fino a magnitudo 7. L’assenza di un evento di tali dimensioni nei cataloghi di sismicità storica, la particolare geometria dell’ATF, ossia il basso angolo di immersione inferiore 30° che ne fa una struttura geologica sfavorevolmente orientata per la riattivazione rispetto al campo di sforzi regionale, e la continua e costante occorrenza di piccoli terremoti, con occasionali eventi di moderata grandezza (fino a magnitudo M 5.5; Gubbio 1984), fa dell’Alta Valle del Tevere un laboratorio naturale per lo studio delle modalità con cui le faglie accomodano la deformazione tettonica.

Figura 2. Sismicità dell’area di studio relativa al periodo 2010-2015 (da Valoroso et al., 2017). SX) Epicentri in mappa con meccanismi focali degli eventi con magnitudo 2.9<ML<3.2. In rosso la traccia in superficie dell’ATF e in verde della faglia di Gubbio. DS) Sezioni verticali che mostrano come la distribuzione in profondità degli eventi sismici (distanti +/-2.5 km dalla traccia della sezione), definisca una struttura geologica immergente a Est che coincide con l’ATF, cosi come ricostruita dalla interpretazione dei profili di sismica a riflessione dell’area (Mirabella et al., 2011 e relative referenze).

È proprio grazie all’alta risoluzione spazio-temporale delle reti geodetiche e sismologiche che lungo l’ATF è stata documentata l’occorrenza di uno slow slip event (terremoto lento) che ha causato una estensione di ~5 mm nei primi sei mesi del 2014, (Gualandi et al. 2017) ed è sempre lungo l’ATF che la modellazione della deformazione geodetica prevede che alcune porzioni di questa grande faglia siano in creeping (scorrimento asismico sul piano di faglia; Anderlini et al., 2016).

Figura 3. (a) Evoluzione della deformazione geodetica (linea rossa) ottenuta dall’analisi delle serie temporali di spostamento GPS rispetto al numero cumulato di terremoti relativi ad uno sciame sismico iniziato a fine 2013 (linea verde). (b) Momento sismico equivalente calcolato dai dati geodetici (linea rossa) rispetto al momento sismico rilasciato (linea verde) dai terremoti relativi allo sciame sismico. (c) Slip cumulato nei 6 mesi dalla fine del 2013 sulle faglie normali ad alto angolo presenti nel tetto (hangingwall) dell’ATF su cui è avvenuto il terremoto lento (slow-slip). Le frecce e i cerchi colorati indicano gli spostamenti cumulati nelle componenti orizzontali e verticale.

Inoltre la zona monitorata da TABOO è stata interessata negli scorsi decenni da un ragguardevole numero di indagini geofisiche, quali prospezioni sismiche e perforazioni di pozzi profondi alcuni chilometri (fino a 5 km; vedi Deep boreholes ENI in Fig. 1), finalizzate alla ricerca di idrocarburi. Queste esplorazioni hanno consentito la ricostruzione accurata delle litologie presenti nei primi chilometri di crosta superficiale, il corrispondente campo di velocità (almeno per le onde P) in 3-dimensioni e la presenza di fluidi (soprattutto anidride carbonica CO2) in sovrappressione. Tutti elementi che arricchiscono ulteriormente l’interesse per lo studio di questa porzione di territorio; soprattutto la presenza di fluidi in pressione. Le modalità del coinvolgimento dei fluidi nella genesi e nell’evoluzione della sismicità è infatti un elemento molto esplorato, anche se le osservazioni dirette a riguardo sono ancora limitate. Nel video qui sotto mostriamo il degassamento di CO2 osservabile al sito di Umbertide, dove allo scopo di monitorarne il flusso nel tempo, è stata installata una delle stazioni geochimiche di misura.

Emissione gassosa di CO2 presso Umbertide. Sul sito è installata una stazione di misura del flusso di CO2, che viene emessa in misura di alcune tonnellate al giorno.

L’infrastruttura tecnologica

Attraverso il contributo congiunto derivante da fondi di progetto internazionali, fondi istituzionali allocati alle diverse sezioni dell’INGV che contribuiscono a TABOO (ONT – Roma1 – Palermo), sono state costruite nell’area di studio, a partire dal 2010 fino ad oggi, decine di nuovi siti equipaggiati con strumentazione per il monitoraggio, a complemento delle già esistenti stazioni di misura permanenti delle reti nazionali INGV (vedi Fig. 1). In queste stazioni remote sono (quando possibile) co-locati sensori sismici (a 3 componenti, a corto e/o lungo periodo e accelerometrici), geodetici (antenne GPS e diffusori satellitari passivi) e geochimici (Radon, CO2 e meteo). È importante ricordare che alcuni di questi moderni sensori (come i misuratori di emissioni gassose e i diffusori satellitari) sono prototipi interamente costruiti presso l’INGV.

Tutte le stazioni sono alimentate da pannelli fotovoltaici e sono collegate in tempo reale attraverso un sistema dedicato di antenne radio Wi-Fi a un centro di acquisizione dati dell’INGV, ubicato nella sede di Ancona, da dove sono inviati anche alla sede INGV di Roma. Nella foto sopra è visibile una delle stazioni di Gubbio (sigla TB01).

In questo modo ci sono due sistemi di archiviazione in due differenti centri, in modo da creare un sistema ridondato e quindi più sicuro. Tutti i dati acquisiti seguono una politica open access, ossia sono resi immediatamente disponibili a tutta la comunità scientifica e non, nazionale ed internazionale, attraverso portali web dedicati, in formati standard decisi in ambiti internazionali.

Attraverso progetti di ricerca all’avanguardia in Europa e nel mondo, con TABOO si sviluppano continuamente moderne metodologie di installazione di sensori sia sismici che di deformazione (strainmeter), all’interno di pozzi della profondità di alcune centinaia di metri.

Il progetto GLASS (ERC-EU; Collettini and Chiaraluce; 2013) è un esempio di una delle prime fasi di questa implementazione infrastrutturale, culminata con la creazione di un seismic array (antenna sismica) in pozzo, unico in Europa in ambiente non industriale, attraverso il quale si può studiare la fisica della sorgente di piccolissimi terremoti (con magnitudo negativa) e monitorare l’occorrenza di un più ampio spettro di transienti di deformazione. Nella foto sopra un momento della fase di installazione di una sonda (velocimetrica a 3C con periodo naturale a 2HZ), in uno dei pozzi profondo 200 m. Il progetto GLASS si è dedicato dello studio delle condizioni per cui si generano processi sismici e/o asismici su faglie, attraverso l’integrazione di dati ad alta risoluzione di fenomeni deformativi osservati sia in ambienti naturali che non, ossia in laboratorio. L’altissima risoluzione delle osservazioni acquisite con le stazioni sismiche TABOO installate in pozzo fa si che questa infrastruttura rappresenti l’osservatorio naturale ideale, complementare alla componente di studio della meccanica dei terremoti attualmente in fase di grande sviluppo, all’interno di laboratori, in quanto consente un avvicinamento tra le scale di osservazione.

Un altro esempio di implementazione e innovazione tecnologica è rappresentato dal progetto STAR (A Strainmeter Array Along the Alto Tiberina Fault System, Central Italy), finanziato di recente dall’International Continental Scientific Drilling Program (ICDP) che attraverso il finanziamento di 6 nuove perforazioni di pozzi della profondità di 80-180 m, dove installare strumentazione sia sismica che geodetica (https://www.icdp-online.org/projects/world/europe/northern-apennines-italy/), ha contestualmente riconosciuto la rilevanza scientifica dello studio delle faglie normali a basso angolo. La strumentazione che sarà installata in questi nuovi siti è stata invece donata all’INGV dal National Science Fundation degli Stati Uniti come prosecuzione del progetto MASS (Measuring aseismic fault slip).

TABOO in Italia e in Europa

La disponibilità di infrastrutture di ricerca all’avanguardia e aperte allo scambio scientifico tra le diverse discipline, è oggi di fondamentale importanza per l’ottenimento di finanziamenti internazionali. I progetti di ricerca nazionali ed internazionali finanziati all’INGV attraverso TABOO ne sono un esempio (Progetti “premiali” del MIUR, progetti europei GLASS-ERC, EPOS, NERA, SERA, RISE, STAR, TECTONIC-ERC).

TABOO è mappata tra le infrastrutture di ricerca di punta in Europa come uno dei Near Fault Observatory Europei (https://www.epos-ip.org/data-services/community-services-tcs/near-fault-observatories), coordinati attraverso Il progetto EPOS (European Plate Observing System; http://www.epos-eu.org/). L’elevato grado di rilevanza scientifica riconosciuto a questi osservatori naturali ha fatto sì che il concetto di laboratorio naturale sia stato di recente formalizzato anche nella comunità dell’Osservazione della Terra (Earth Observation) grazie all’iniziativa dei Supersites, che ha definito i cosiddetti Geohazards Natural Laboratories distribuiti in specifiche aree di tutto il mondo, caratterizzate da un alto rischio sismico, e dove quindi si concentrano i dati acquisiti da sensori su piattaforma satellitare.

Insieme alla ricerca di base, TABOO rappresenta anche un importante strumento per la creazione di prodotti software per l’analisi di dettaglio e in tempo quasi reale di molteplici parametri geofisici caratterizzanti delle sequenze sismiche. Pacchetti che una volta ottimizzati, sono utili anche alle attività istituzionali inerenti il servizio di monitoraggio e analisi che l’INGV espleta presso l’Osservatorio Nazionale dei Terremoti e il Centro Pericolosità Sismica, e quando queste divisioni dell’Ente si interfacciano con Protezione Civile, Società Civile e Media.

TABOO rappresenta quindi oggi un laboratorio naturale all’avanguardia nel panorama internazionale dove i migliori giovani scienziati di tutto il mondo possono recarsi a testare le loro idee sulla fisica che sta alla base dei processi di generazione dei terremoti. Un processo virtuoso che consente insieme all’incremento qualitativo della attività di ricerca scientifica italiana dell’INGV e al miglioramento dell’efficacia e l’efficienza del nostro sistema di osservazione, di migliorare il posizionamento internazionale del nostro paese nella ricerca sui terremoti.

A cura di Lauro Chiaraluce in collaborazione con Antonio Caracausi, Marco Cattaneo, Raffaele Di Stefano, Antonio Piersanti e Enrico Serpelloni, INGV.

Bibliografia

Anderlini, L., E. Serpelloni, and M. Belardinelli (2016), Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy), Geophys. Res. Lett., 43, 221–4329, doi:10.1002/2016GL068604.

Chiaraluce, L., Amato, A., Carannante, S., Castelli, S., Cattaneo, M., Cocco, C. Collettini, E. D’Alema, R. Di Stefano, D. Latorre, S. Marzorati, F. Mirabella, G. Monachesi, D. Piccinini, A. Nardi, A. Piersanti, S. Stramondo, L. Valoroso (2014). The Alto Tiberina Near Fault Observatory (northern Apennines, Italy). Annals of Geophysics, 57, S0327. https://doi.org/10.4401/ag-6426.

Chiaraluce, L., Collettini, C., Cattaneo, M., & Monachesi, G. (2014). The shallow boreholes at the Altotiberina near fault Observatory (TABOO; northern Apennines of Italy). Scientific Drilling, 17, 31–35. https://doi.org/10.5194/sd-17-31-2014.

Collettini C. and L. Chiaraluce (2013). Integrated Laboratories to Study Aseismic and Seismic Faulting. Vol. 94 N. 10, EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION, 97–104.

Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M.E. & Avouac, J.P., 2017. Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy),

Geophys. Res. Lett., 44, doi:10.1002/2017GL073687.

Mirabella, F., F. Brozzetti, A. Lupattelli, and M. R. Barchi (2011), Tectonic evolution of a low‐angle extensional fault system from restored cross‐sections in the Northern Apennines (Italy), Tectonics, 30, TC6002, doi:10.1029/2011TC002890.

Valoroso, L., Chiaraluce, L., Di Stefano, R. and Monachesi, G. (2017). Mixed-mode slip behaviour of the Altotiberina low-angle normal fault system (Northern Apennines, Italy) through high-resolution earthquake locations and repeating events. Journal of Geophysical Research: Solid Earth, 122. https://doi.org/10.1002/2017JB014607.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

 

Evento sismico del 22 settembre 2019, Ml 3.8, in provincia di Udine

Alle ore 14:58 italiane del 22 settembre 2019 un evento sismico di magnitudo Ml 3.8 è stato localizzato dalla Rete Sismica Nazionale dell’INGV 3 km a nord-ovest di Tolmezzo in provincia di Udine ad una profondità di 13 chilometri.

La localizzazione dell’evento di magnitudo Ml 3.8 di questo pomeriggio alle ore 14:58. In giallo la sismicità dal 1 gennaio 2018.

L’evento è stato localizzato nella provincia di Udine nelle vicinanze dei comuni di Tolmezzo e Zuglio. Nella tabella di sotto i comuni entro 10 km dall’epicentro.

L’area interessata dall’evento sismico di questo pomeriggio è considerata a pericolosità sismica molto ALTA, come è mostrato dal modello di pericolosità per il territorio nazionale.

La sismicità storica dell’area riporta in questa area diversi eventi sismici di elevata magnitudo. Dalla mappa dei terremoti del passato estratti dal Catalogo Parametrico dei Terremoti Italiani (CPTI15) si evidenzia che il terremoto del 27 marzo 1928, di magnitudo stimata Mw 6.0,  ebbe un epicentro leggermente a sud dell’evento sismico odierno.

Altri eventi sismici nel passato si sono verificati nel 1511, nel 1794 e soprattutto nel 1976 con area epicentrale qualche chilometro a sud dell’odierno epicentro. In particolare ricordiamo la lunga sequenza sismica che ha colpito il Friuli nel 1976, con diverse scosse di magnitudo elevata che si sono protratte per molti mesi.

Nella stessa area della provincia di Udine, il 14 giugno di quest’anno è stato localizzato un altro evento sismico di magnitudo simile (Mw 3.7), risentito fino ad Udine.

Il terremoto avvenuto oggi, come si evince dalla Mappa del risentimento sismico in scala MCS elaborata a partire dai questionari online dal sito www.haisentitoilterremoto.it , evidenzia alcuni risentimenti nei dintorni di Tolmezzo fino al IV grado MCS, un’area meno estesa rispetto a quello del 14 giugno. La mappa aggiornata dei risentimenti è disponibile al seguente LINK.

Al momento (ore 16:00) si registrano altre due scosse nella zona di magnitudo inferiore a 1.0. Per ulteriori informazioni: http://terremoti.ingv.it/ 

I dati sismologici delle reti operanti nella regione, dell’INGV e dell’OGS, hanno permesso di identificare il tipo di movimento associato all’evento sismico, utilizzando il metodo del Time Domain Moment Tensor (TDMT). Il terremoto è avvenuto su una faglia inversa, ossia caratterizzata da un movimento di compressione orizzontale, orientata circa nordest-sudovest e con direzione di massima compressione perpendicolare a questo andamento (sudest-nordovest). Questo tipo di movimento è caratteristico della regione ed è causato dalla spinta che esercita la (micro)placca adriatica verso l’arco alpino. La figura sotto mostra la soluzione automatica del meccanismo del terremoto, che verrà rivisto nelle prossime ore. La magnitudo momento calcolata con questo metodo sembra al momento più bassa della magnitudo Richter stimata e riportata finora, con valori compresi tra 3.4 e 3.5.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

%d blogger hanno fatto clic su Mi Piace per questo: