Archivi Blog

I terremoti del ‘900: la sequenza sismica in Umbria-Marche del 1997

Il 26 settembre 1997  due eventi sismici di magnitudo Mw 5.7 e 6.0 colpirono l’area di Colfiorito (al confine tra Umbria e Marche) a distanza di nove ore l’uno dall’altro (alle 2:33 e alle 11:40 ore italiane).

Questo slideshow richiede JavaScript.

La sequenza sismica del 1997 al confine tra Umbria e Marche rappresenta uno spartiacque per la sismologia italiana. Si è trattato del primo terremoto nel nostro Paese per il quale furono disponibili dati di alta qualità rilevati dalle reti di monitoraggio a terra e dai satelliti. Il quadro che questi dati fornirono permise di delineare con una precisione mai raggiunta prima le caratteristiche delle faglie che si erano attivate e dei meccanismi di generazione dei terremoti appenninici. Gli eventi sismici degli anni successivi, quelli del 2009 all’Aquila e la recente sequenza del 2016-2017, hanno confermato molte delle interpretazioni tratte dagli studi sui terremoti del 1997, evidenziando ulteriori elementi caratteristici. La galleria fotografica mostra alcune immagini della Rete Sismica Mobile dell’ING (Istituto Nazionale di Geofisica, poi confluito nell’Istituto Nazionale di Geofisica e Vulcanologia), installata nelle prime ore dopo i terremoti del 26 settembre, che ha rappresentato uno degli strumenti più importanti per la ricerca sismologica, nonché un punto di riferimento informativo molto importante per la comunità locale colpita dal terremoto nel 1997.

Mappa epicentrale delle sequenze sismiche in Italia centrale dal 1997 al 2017. I terremoti del 1997 sono rappresentati in blu. Le tre stelle blu in alto a sinistra sono gli epicentri dei terremoti del 26 settembre e del 14 ottobre 1997. In giallo la sequenza dell’Aquila del 2009, in arancione e rosso la sismicità del 2016-2017.

Un tratto molto importante emerso dagli studi sulla sequenza del 1997 è la tendenza dei terremoti appenninici a manifestarsi con la migrazione dell’attività tra segmenti di faglia vicini, come accadde proprio il 26 settembre 1997. Al primo terremoto di magnitudo Mw 5.7, avvenuto nella notte alle ore 02:33 italiane, seguì un secondo evento più forte nove ore dopo, di magnitudo Mw 6.0, alle ore 11:40 italiane, che provocò ulteriori crolli e vittime. Studi successivi permisero di comprendere le cause di questa migrazione di sismicità (Cocco et al., 2000; Miller et al., 2004; Antonioli et al., 2005), anche se un unico modello in grado di spiegare la variegata casistica registrata in tutti i successivi terremoti appenninici (per es. L’Aquila, 2009, Amatrice-Norcia-Visso, 2016; Campotosto, 2017) non è ancora stato definito.

Il crollo della Basilica di Assisi la mattina del 26 settembre 1997.

La sequenza si manifestò con sette terremoti principali di magnitudo momento Mw compresa tra 5.0 e 6.0 nel primo mese di attività e migliaia di terremoti di magnitudo minore che in 40 giorni attivarono un sistema di faglie esteso per circa 45 chilometri lungo l’Appennino.

Data Ora (UTC) Zona Mw
26/09/1997 0:33 Appennino umbro-marchigiano 5.7
26/09/1997 9:40 Appennino umbro-marchigiano 6.0
26/09/1997 9:47 Appennino umbro-marchigiano 5.0
03/10/1997 8:55 Appennino umbro-marchigiano 5.2
06/10/1997 23:24 Appennino umbro-marchigiano 5.5
12/10/1997 11:08 Valnerina 5.2
14/10/1997 15:23 Valnerina 5.6
21/03/1998 16:45 Appennino umbro-marchigiano 5.0
26/03/1998 16:26 Appennino umbro-marchigiano 5.3
03/04/1998 7:26 Appennino umbro-marchigiano 5.1

I due eventi principali della sequenza (Mw 5.7 e 6.0) colpirono l’area di Colfiorito, rompendo due faglie con meccanismo distensivo (faglie normali) con opposta direttività. Uno degli elementi più significativi della sequenza fu la migrazione della sismicità da Nord-Ovest a Sud-Est e la conseguente attivazione di segmenti di faglia adiacenti, un meccanismo poi ritrovato in altri terremoti appenninici. Altri due eventi di magnitudo maggiore di 5.0 si verificarono il 3 e il 6 ottobre 1997: magnitudo Mw 5.2 e 5.5, rispettivamente.

Successivamente, l’attività interessò il settore meridionale, verso Sellano e Preci (PG), e culminò con due forti eventi il 12 ottobre di magnitudo Mw 5.2 e il 14 ottobre, magnitudo 5.6. Nel mese di aprile del 1998 un altro terremoto di magnitudo Mw 5.1 interessò l’area di Gualdo Tadino, estendendo così l’area attiva ancora più a Nord.

I terremoti della sequenza hanno interessato faglie normali (o estensionali) che dislocarono la porzione più superficiale della crosta fino a 8 km di profondità, con pendenza verso Sud-Ovest. Queste caratteristiche furono individuate grazie ai dati delle reti sismiche, in particolare della Rete Sismica Mobile che fu installata lo stesso 26 settembre 1997 nell’area epicentrale. Nella figura sotto, tratta da un articolo pubblicato nel 1998 sul GRL (Geophysical Research Letters), si vede, in mappa e in una sezione verticale attraverso l’area di Colfiorito, la distribuzione spaziale degli eventi sismici che delineano la faglia responsabile del terremoto, con un andamento parallelo alla catena e immersione di circa 40° da Nord-Est a Sud-Ovest.

Mappa (in alto) e sezione verticale (in basso) dei terremoti del 1997 (da Amato et al., 1998)

L’analisi delle migliaia di eventi sismici registrati dalle reti sismiche portò poi a delineare in modo dettagliato la notevole complessità del sistema di faglie che si erano attivate nella regione, come evidente nella figura sotto.

Sezioni Ovest-Est attraverso il sistema di faglie di Colfiorito. A destra gli eventi sismici rilocalizzati, a sinistra l’interpretazione delle faglie coinvolte (da Chiaraluce et al., 2004)

I terremoti del 1997 inaugurarono anche l’era della “sismologia spaziale” in Italia. Gli eventi del 26 settembre sono stati infatti i primi terremoti italiani per i quali i satelliti permisero di evidenziare gli spostamenti della superficie e realizzare così un modello di faglia (Stramondo et al., 1999). Anche i dati GPS furono molto utili per la caratterizzazione delle sorgenti sismiche interessate (Anzidei et al., 1999).

Interferogrammi calcolati con i satelliti ERS per i terremoti del 1997 (Lundrgren and Stramondo, 2002).

Gli interferogrammi mostrati sopra, unitamente ai dati GPS misurati prima e dopo i terremoti principali, furono molto utili per calcolare lo spostamento cosismico del terreno e ricavare quindi un modello di faglia per gli eventi principali della sequenza del 1997. Altri modelli di faglia vennero proposti da Capuano et al. (2000) e Hernandez et al. (2004).

Spostamento del terreno (i colori indicano i cm) ricavato dal modello di faglia ottenuto con i dati SAR e GPS. Le linee nere rappresentano le frange di interferenza ottenute dagli interferogrammi della figura precedente. Le frecce mostrano gli spostamenti orizzontali del terreno misurati dai dati GPS e quelli calcolati dal modello di faglia (Lundrgren and Stramondo, 2002)

Nel 1997 la Rete Sismica Nazionale non era ancora stata aggiornata agli standard internazionali più elevati (come accadde a partire dal 2001), ma le reti sismiche digitali euro-mediterranee (come la Rete MedNet dell’ING) e quelle globali cominciavano a fornire dati di elevata qualità per calcolare i meccanismi focali dei terremoti più forti della sequenza. I dati mostrarono inequivocabilmente, per la prima volta in maniera così chiara e diffusa, la predominanza che rivestono le faglie normali nella deformazione della penisola italiana (Ekstrom et al., 1998).

I terremoti del 26 settembre 1997 aprirono una nuova fase anche per la geologia del terremoto in Italia. Dopo il forte evento sismico del 1980 in Irpinia, infatti, quello dell’Umbria-Marche fu il primo terremoto a lasciare una traccia evidente, sebbene molto labile, di fagliazione superficiale. Le tracce della faglia furono seguite e studiate dai geologi con grande attenzione e nei minimi dettagli, aprendo nuove ipotesi sul rapporto tra faglie geologiche note, faglie cosismiche e fagliazione superficiale (si vedano tra gli altri Basili et al., 1998; Cinti et al., 1999).

Uno degli effetti in superficie del terremoto del 26 settembre

Altri studi molto importanti riguardarono gli effetti di amplificazione delle onde sismiche al variare della geologia di superficie (es. Gaffet et al., 2000). Nell’esempio riportato sotto si vede la differenza tra una registrazione effettuata sui rilievi calcarei al bordo del bacino e da un array di sismometri ubicato nel bacino stesso; si nota la forte amplificazione, sia come ampiezza che come durata, rilevata da questi ultimi a causa della spessa coltre di sedimenti lacustri presenti nell’area.

Molte attività di studio dei terremoti vennero avviate o sistematizzate dopo i terremoti del 1997. Tra queste, una novità importante è stata la nascita del Gruppo “QUEST” (QUick Earthquake Survey Team), in collaborazione tra ING (Istituto Nazionale di Geofisica, poi confluito nell’INGV), GNDT (Gruppo Nazionale per la Difesa dai Terremoti, le cui funzioni rientrarono poi nell’INGV), SSN (Servizio Sismico Nazionale, confluito poi nel Dipartimento Nazionale della Protezione Civile) e alcune università.


Bibliografia selezionata

Numerosissimi sono gli articoli scientifici pubblicati sulla sequenza del 1997. Nella lista seguente sono riportati solo alcuni tra quelli pubblicati dopo il terremoto che trattano i vari aspetti degli studi effettuati. Per una bibliografia aggiornata e una rassegna più esaustiva si veda qui.

Amato, A., Azzara, R., Chiarabba, C., Cimini, G., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, G. and Ripepe, M. (1998). The 1997 Umbria-Marche, Italy earthquake sequence: a first look at the main shocks and aftershocks. Geophysical Research Letters, 25:2861- 2864

Antonioli A., Piccinini D, Chiaraluce L, Cocco M. (2005). Fluid flow and seismicity pattern:Evidence from the 1997 Umbria Marche (central Italy) seismic sequence, Geophys. Res. Lett., 32, doi:10.1029/2004GL022256

Anzidei M., Baldi P., Galvani A., Pesci A., Hunstad I. and Boschi E., (1999). Coseismic displacement of the 26th september 1997 Umbria – Marche (Italy) earthquakes detected by GPS: campaigns and data. Annali di Geofisica, vol.42, n.4, 597-607

Basili, R, Bosi, C., Bosi, V., Galadini, F., Galli, P., Meghraoui, M., Messina, P., Moro, M. and Sposato, A., (1998). The Colfiorito earthquake sequence of September-October 1997. Surface breaks and seismotectonic implications for the central Apennines (Italy). J. of Earthquake Engineering, 102(2), pp. 291-302

Capuano, P., Zollo, A., Emolo, A., Marcucci, S. and Milana, G. (2000). Rupture mechanism and source parameters of the Umbria-Marche main shocks from strong motion data. J. Seism., 4, 436-478

Chiarabba C. and Amato A (2003). Vp and Vp/Vs images of the Colfiorito fault region (Central Italy): a contribute to understand seismotectonic and seismogenic processes, J. Geophys. Res., 108, 10.1029/2001JB001665

Chiaraluce L., Chiarabba C., Cocco M., and Ellsworth W.L. (2003). Imaging the complexity of a normal fault system: The 1997 Colfiorito (Central Italy) case study, J. Geophys. Res., 108, 10.1029/2002JB00216

Cinti, F.R., Cucci, L., Marra, F. and Montone, P., (1999). The 1997 Umbria-Marche (Italy) earthquake sequence: relationship between ground deformation and seismogenic structure. Geophys. Res. Lett. 26(7), pp. 895-898

Cocco, M., Nostro, C., Ekstrom, G. (2000). Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence. J. Seismol., 4, 501–516

Cultrera, G., Rovelli, A., Mele, G., Azzara, R.M., Caserta, A. and Marra, F. (2003). Azimuth-dependent amplification of weak and strong ground motions within a fault zone (Nocera Umbra, central Italy), J. Geophys. Res., 108 (B3), 2156

Ekström, G., Morelli, A., Boschi, E. and Dziewonski A.M., (1998). Moment tensor analysis of the central Italy earthquake sequence of September-October 1997, Geophys. Res. Let., 25, 1971-1974

Gaffet, S., Cultrera, G., Dietrich, M., Courboulex, F., Marra, F., Bouchon, M., Caserta, A., Cornou, C.,Daschamps, A., Glot, J.P, and Guiguet, R. (2000). A site effect study in the Verchiano valley during the 1997 Umbria-Marche (Central Italy) earthquakes, Journal of Seismology Vol. 4

Hernandez, B., Cocco, M., Cotton, F., Stramondo, S., Scotti, O., Courboulex, F. and Campillo, M., (2004). Rupture history of the 1997 Umbria-Marche (central Italy) mainshocks from the inversion of GPS, DInSAR and near field strong motion data. Ann. Geophys., 47, 4, 1355-1376

Lundgren, P. and Stramondo, S., (2002). Slip distribution of the 1997 Umbria-Marche earthquake sequence: Joint inversion of GPS and synthetic aperture radar interferometry data, J. Geophys. Res., 107(B11), 2316, doi:10.1029/2000JB000103

Miller, S.A:, Collettini C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P. (2004). Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427, 724-727

Stramondo S., Tesauro M., Briole P., Sansosti E., Salvi S., Lanari R., Anzidei M., Baldi P., Fornaro G., Avallone A., Buongiorno M.F., Franceschetti G., Boschi E., (1999). The September 26,1997 Central Italy earthquakes: coseismic surface displacement detected by sar interferometry and GPS, and fault modeling. Geophysical Research Letters, vol.26, n.7, pp.883-886 April, 1

Il terremoto del 30 ottobre 2016: trincee paleosismologiche sulla faglia

La scorsa settimana l’INGV, in collaborazione con i colleghi francesi dell’Institut de Radioprotection et de Sûreté Nucléaire, ha aperto 3 trincee per studi paleosismologici lungo la faglia del terremoto del 30 ottobre 2016 (Mw 6.5), con l’obiettivo di individuare e datare i terremoti antenati di quest’ultimo che hanno a loro volta prodotto rotture dall’ipocentro fino alla superficie.

Infatti, il terremoto del 30 ottobre ha rotto la crosta terrestre dall’ipocentro alla superficie producendo sui versanti occidentali dei Monti Vettore-Bove e nelle piane sottostanti degli scalini che interrompono le morfologie e si estendono per circa 25 km (Rapporto di sintesi sul terremoto del 30 ottobre M 6.5 in Italia Centrale).

Questi effetti geologici prodotti dal terremoto in superficie sono avvenuti anche con i terremoti del passato e se conservati nel record geologico possono essere letti e interpretati dai paleosismologi. Ma perché questi studi? Il passato è una chiave per conoscere il futuro. Quindi per poter modellare il comportamento sismico nel futuro di una regione utilizziamo tutta la storia sismica precedente che si basa principalmente su dati di sismologia storica, recente, ma anche di “archeosismologia” e “paleosismologia” che ci permettono di estendere le informazioni sui grandi terremoti indietro nel tempo di alcune migliaia di anni.

Una quindicina di anni fa delle trincee erano state scavate nella piana di Castelluccio (Galadini e Galli, 2003) e vi erano state riconosciute le tracce di un evento più antico di 800 anni – di magnitudo probabilmente simile a quello del 30 ottobre – e di un paio di terremoti precedenti.

Le nuove trincee aperte ai piedi del Monte Vettore (in foto qui sotto) mostrano chiaramente l’andamento della faglia in profondità e le evidenze di dislocazioni prodotte da terremoti precedenti. Sono in corso rilievi accurati e datazioni che permetteranno di caratterizzare tali eventi.

Nei prossimi giorni queste trincee saranno visitate a un centinaio di geologi e sismologi italiani e stranieri che parteciperanno al Workshop internazionale itinerante «From 1997 to 2016: Three destructive earthquakes along the central apennine fault system” che abbiamo organizzato insieme all’Università di Camerino e ad altre Università e enti nazionali e internazionali.

Questo incontro ripercorrerà sul terreno le faglie responsabili dei terremoti del 1997, 2009 e 2016, per rianalizzare gli effetti prodotti in superficie (scarpate di faglia, subsidenza, frane, liquefazioni ecc.), discuterne affinità e differenze, congruenze e incongruenze con gli altri dati a disposizione e definire il ruolo delle conoscenze geologiche nella stima della pericolosità sismica.

Link

Pagina di approfondimenti sulla sequenza sismica di Amatrice, Norcia e Visso del 2016-2017.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

I satelliti osservano la deformazione degli acquiferi carsici

I grandi acquiferi carsici dell’Appennino si deformano in relazione alle variazioni stagionali e multi-annuali di piovosità. Questo il risultato principale di un articolo pubblicato di recente sul Journal of Geophysical Research dal titolo Transient deformation of karst aquifers due to seasonal and multi-year groundwater variations observed by GPS in southern Apennines, di Francesca Silverii et al., che è stato premiato (motivazione) all’ultimo Convegno annuale del GNGTS (Lecce, novembre 2016). La ricerca sfrutta l’analisi integrata di dati satellitari e dati idrologici di vario tipo per ricostruire le deformazioni periodiche. Nel lavoro vengono indagate le cause e indicate le possibili implicazioni del fenomeno osservato.

Uomo seduto e vortici d'acqua, Leonardo da Vinci, Windsor, Royal Library, c. 1513. "Acqua è fra i quattro elementi il secondo men greve e di seconda volubilità. Questa non ha mai requie insino che si congiunge al suo marittimo elemento [...]. Volentieri si leva per lo caldo in sottile vapore per l'aria. Il freddo la congela, stabilità la corrompe. [...] Piglia ogni odore, colore e sapore e da sé non ha niente.[...]". Parigi, Manoscritto C, f. 26v

Uomo seduto e vortici d’acqua, Leonardo da Vinci. “Acqua è fra i quattro elementi il secondo men greve e di seconda volubilità. Questa non ha mai requie insino che si congiunge al suo marittimo elemento […]. Volentieri si leva per lo caldo in sottile vapore per l’aria. Il freddo la congela, stabilità la corrompe. […] Piglia ogni odore, colore e sapore e da sé non ha niente.[…]”. Parigi, Manoscritto C, f. 26v (da: http://www.michelemossa.it/ )

Introduzione

Da alcuni decenni la geofisica si avvale di strumenti innovativi per studiare la deformazione della superficie terrestre. Grazie a osservazioni molto accurate ottenute tramite l’utilizzo dei satelliti appartenenti al Global Positionig System (GPS) si è oggi in grado di registrare deformazioni di ampiezza variabile (da pochi millimetri a svariati metri) che coinvolgono scale spaziali (da decine di metri a centinaia di chilometri) e temporali (dai secondi agli anni) molto diverse. In particolare, sfruttando tecnologie avanzate e complesse tecniche di processamento dei dati, i satelliti GPS permettono di registrare la posizione di un punto a terra (dove si trova l’antenna) con incertezze di pochi millimetri. Questa posizione, riferita a un definito sistema di coordinate, viene espressa tramite tre componenti (nord, est, verticale) e registrata con continuità nel tempo, dando luogo alle cosiddette “serie temporali”.

Come è ben noto, i terremoti sono in grado di deformare la superficie terrestre in modo più o meno visibile a seconda della loro entità. Le osservazioni ottenute tramite la tecnica GPS sono ormai largamente usate in tutto il mondo per studiare le deformazioni associate al ciclo sismico (qui) e hanno fornito un contributo molto importante per capire meglio la natura di questo fenomeno. Negli ultimi anni, inoltre, si è notata l’utilità delle osservazioni geodetiche per studiare l’effetto della redistribuzione delle grandi masse d’acqua sulla superficie terrestre. Ad esempio, le stazioni GPS installate in California hanno registrato un chiaro andamento di sollevamento associato alla forte siccità che ha colpito l’area californiana dal 2012 (link). Lo studio delle deformazioni idrologiche transienti (cioè variabili nel tempo) di origine non tettonica si sta rivelando di grande interesse in quanto può fornire informazioni uniche circa i trend climatici e il comportamento degli acquiferi, che rappresentano una risorsa indispensabile per l’uomo. L’individuazione dei segnali transienti non tettonici è inoltre fondamentale per la corretta stima delle deformazioni di origine tettonica e per lo studio delle eventuali interazioni con la sismicità.

I dati e la rete RING

In Italia è presente una rete di stazioni GPS permanenti, gestite in gran parte dall’Istituto Nazionale di Geofisica e Vulcanologia (Rete RING), che registrano continuamente la deformazione del suolo. Nel questo lavoro sono state analizzate le osservazioni GPS dell’Italia centro-meridionale ed è stato individuato un segnale transiente multi-annuale. Questo segnale è particolarmente forte nelle componenti orizzontali (ampiezza massima ≈ 1 cm) delle stazioni localizzate in prossimità degli acquiferi carsici degli Appennini e diminuisce con la distanza da essi (Fig. 1).

fig1

Fig 1. Serie temporali (posizione nel tempo) GPS osservate (punti colorati) relative a vari siti dell’Italia centro-meridionale. Le linee nere tratteggiate rappresentano un filtro gaussiano di 6 mesi di ampiezza. Le serie sono ordinate a partire dai siti sulla costa tirrenica (in basso) verso quelli sulla costa adriatica (in alto). Sinistra: componente orizzontale proiettata lungo una direzione perpendicolare all’asse degli Appennini (N45E); centro: componente orizzontale proiettata lungo una direzione parallela all’asse degli Appennini (N135E); destra: componente verticale. Si noti la simmetria per la componente N45E tra le serie sotto e sopra CDRU e SAL1. T1 e T2 si riferiscono a due intervalli di 2.5 anni in cui il segnale multi-annuale ha andamento opposto e per cui sono state stimate le velocità rappresentate in Fig. 2.

Risultati

Gran parte degli Appennini è costituita da rocce calcaree in cui per effetto del carsismo e della fratturazione si verifica l’infiltrazione e l’immagazzinamento di ingenti quantità d’acqua. Il segnale individuato presenta una caratteristica simmetria tra le stazioni a cavallo degli acquiferi, che si ritrova anche al livello delle oscillazioni stagionali: a intervalli alterni gli acquiferi subiscono espansione e contrazione (una sorta di andamento “a fisarmonica”), come evidenziato per gli intervalli temporali T1 e T2 in Fig. 2.

fig2

Fig 2. Velocità osservate (frecce nere) e modellate (frecce rosse) stimate dalle serie temporali GPS, le ellisse rappresentano l’errore al 95% dell’intervallo di confidenza. Le velocità sono state stimate come deviazioni rispetto al trend a lungo termine in un periodo di diminuzione della piovosità (T1) e in un periodo di aumento della piovosità (T2). Le aree ombreggiate in blu indicano gli acquiferi carsici. I segmenti blu indicano la posizione delle dislocazioni tensili verticali utilizzate per simulare l’apertura/chiusura delle fratture all’interno degli acquiferi. I grafici sulla destra rappresentano una sezione lungo la linea punteggiata nera in mappa. Sono mostrate la topografia (area grigia), le velocità osservate (cerchi neri) e modellate lungo il profilo (linea rossa) e la posizione della dislocazione (linea verticale blu).

La componente verticale delle osservazioni GPS è, per ragioni intrinseche alla tecnica, più rumorosa rispetto alle componenti orizzontali (Fig. 1). Un segnale transiente con andamento temporale simile a quello delle componenti orizzontali è però visibile anche nella componente verticale, soprattutto dopo aver mediato (“stacking”) le osservazioni di diverse stazioni. Questa operazione permette infatti di evidenziare le eventuali caratteristiche comuni a più serie temporali GPS. A differenza delle componenti orizzontali, il segnale transiente sulla componente verticale è presente con caratteristiche analoghe anche nei siti lontani dagli acquiferi carsici.

La correlazione spaziale con la distribuzione geografica degli acquiferi e l’analogia con il comportamento stagionale suggeriscono che il segnale transiente individuato abbia cause non tettoniche, in particolare associate alle variazioni stagionali e inter-annuali della quantità di acqua nella crosta terrestre. Negli Appennini centro-meridionali il clima è quello tipico delle zone montuose dell’area mediterranea, con estati secche e periodi autunnali e invernali caratterizzati da precipitazioni abbondanti. L’andamento multi-annuale delle precipitazioni nell’area mediterranea risente inoltre di processi climatici a grande scala, come l’Oscillazione Nord Atlantica. Per verificare l’ipotesi circa l’origine del segnale transiente, sono stati analizzati diversi tipi di dati che forniscono indicazioni sulle variazioni del contenuto di acqua sulla/nella crosta terrestre. L’informazione più immediata in questo senso è data dalla misura della pioggia. Le osservazioni della rete pluviometrica della Protezione Civile-Regione Campania indicano un chiaro andamento multi-annuale delle precipitazioni con “periodicità” analoga a quella evidenziata nei dati GPS (Fig. 3).

La variabilità temporale delle precipitazioni sugli Appennini influenza la ricarica degli acquiferi, che si ripercuote sull’andamento dello scarico delle principali sorgenti. Ciò è evidente nella serie temporale di scarico della sorgente Sanità (Caposele), una delle principali sorgenti dell’Italia meridionale (Fig. 3). A periodi caratterizzati da precipitazioni scarse, come gli anni 2007-2008 (intervallo T1) corrisponde uno scarso scarico da parte della sorgente, viceversa accade in periodi ad elevata piovosità (intervallo T2). Sono state analizzate infine le osservazioni dei satelliti GRACE i quali, tramite misure delle variazioni del campo di gravità terrestre, forniscono indicazioni sulle variazioni del contenuto d’acqua totale (Terrestrial Water Storage, TWS) nella crosta terrestre superficiale (come acqua superficiale, sotterranea, umidità del suolo). La stima del TWS mediata sull’area in esame (Fig. 3) mostra un chiaro andamento multi-annuale con caratteristiche simili agli altri tipi di dati, come il periodo a basso TWS negli anni 2007-2008 (intervallo T1).

fig3

Fig. 3. Confronto tra le serie temporali orizzontali GPS (componente N45E) e i dati idrologici. I dati GPS (punti grigi e viola) sono le componenti orizzontali proiettate in direzione N45E di alcuni siti selezionati in area carsica e a cui è stato rimosso un trend a lungo termine (CDRU invertito per chiarezza). I dati di pioggia relativi alle due stazioni Gioi Cilento (linea rossa) e Senerchia (linea arancione) sono rappresentati come pioggia cumulata (sommata nel tempo) a cui è stato successivamente rimosso il trend a lungo termine. Questo tipo di rappresentazione mette in evidenza le deviazioni rispetto a un andamento costante della piovosità. La linea blu rappresenta lo scarico giornaliero della sorgente Caposele. La linea verde (con incertezza ±1-sigma) rappresenta la stima di TWS dai satelliti GRACE. Questa è espressa come altezza di acqua equivalente (EWH) e rappresenta una media sull’area in esame. I cerchi rossi rappresentano la serie verticale GPS “stacked” utilizzando stazioni dentro e fuori l’area carsica. La serie è campionata mensilmente alle stesse epoche del satellite GRACE (si noti l’asse verticale invertito).

Dal confronto tra i dati GPS e i dati idrologici emergono due caratteristiche principali. La componente verticale GPS è notevolmente anticorrelata con il dato di TWS dei satelliti GRACE (Fig. 3). Questo indica che a periodi a basso contenuto d’acqua (come l’intervallo T1) corrisponde un andamento di sollevamento che coinvolge tutta l’area e viceversa accade in periodi ad elevato contenuto d’acqua (come l’intervallo T2). Questo comportamento è tipicamente dovuto alla risposta elastica della crosta a un carico imposto in superficie, che, in questo caso, è dovuto principalmente all’acqua. La componente orizzontale GPS dei siti attorno agli acquiferi carsici è invece fortemente correlata con lo scarico della sorgente Caposele (Fig. 3). In particolare a periodi a scarico elevato (come l’intervallo T2) corrisponde un andamento di espansione degli acquiferi, mentre a periodi di siccità corrisponde un andamento di contrazione (come l’intervallo T2). La spiegazione proposta nel lavoro è che la deformazione orizzontale sia legata alla variazione dell’altezza della tavola d’acqua all’interno degli acquiferi che comporta una variazione della pressione idrostatica all’interno della fitta rete di fratture che caratterizza gli acquiferi. Nei periodi ad elevata ricarica degli acquiferi (come l’intervallo T2) l’aumento di pressione idrostatica provoca l’apertura delle fratture e, a sua volta, una deformazione di tutto l’acquifero. Visti i numerosi e non noti parametri in gioco, la vastità dell’area in esame e la complessità del fenomeno, nel lavoro è presentato un modello molto semplificato che simula le principali caratteristiche della deformazione osservata (Fig. 2).

Oltre all’interesse per la comprensione delle caratteristiche e la gestione ottimale delle grandi riserve d’acqua dell’Appennino, il lavoro mette in evidenza un forte segnale non-tettonico che ha implicazioni potenzialmente significative per l’analisi accurata dei processi tettonici da serie geodetiche.

A cura di Francesca Silverii (INGV, attualmente presso l’Università della California-San Diego).

L’articolo può essere visualizzato al seguente link o richiesto via e-mail all’autrice principale: francesca.silverii@ingv.it, fsilverii@ucsd.edu .

Evento sismico in provincia di Perugia, M 4.1, 2 gennaio 2017

Un terremoto di magnitudo 4.1 è avvenuto questa notte, 2 gennaio, alle ore 4:36 italiane in provincia di Perugia. I comuni più vicini all’epicentro sono Campello sul Clitunno, Castel Ritaldi, Spoleto e Trevi (PG). Il terremoto è stato localizzato a una profondità di circa 8 km.

epicentro

L’evento sismico è avvenuto in una zona prossima a quella della sequenza iniziata il 24 agosto in Italia centrale, ma su una struttura diversa, spostata di circa 30 km a ovest di questa, come si vede nella mappa sotto.

campello-clitunno-2gen2016-2

Il terremoto è stato avvertito bene in tutta la zona, come si deduce dalle mappe di scuotimento prodotte con i dati delle reti sismiche e accelerometriche e dal questionario di “hai sentito il terremoto?“.

campello-clitunno-2gen2016

La zona è caratterizzata da una pericolosità sismica elevata, come si vede nella mappa sotto.

855143-hazard

In epoca storica l’area in questione è stata colpita da terremoti di magnitudo intorno a 5.5. Si ricordano in particolare il terremoto del giugno 1767 e del settembre 1878 entrambi di magnitudo stimata 5.4 ed avvenuti in prossimità dell’epicentro odierno. Più recentemente, ricordiamo il terremoto di Massa Martana di magnitudo 4.6, con epicentro circa 15 km più a ovest, avvenuto nel maggio 1997.

A seguito della scossa delle 04:36, fino alle 11.00 italiane sono stare registrate 12 repliche, il più forte di magnitudo 2.5 avvenuto alle ore 06.35. Ulteriori informazioni e mappe sono disponibili sul sito INGV alla pagina dell’evento.

Sequenza sismica in Italia centrale: aggiornamento del 24 dicembre 2016

A 4 mesi dal terremoto del 24 agosto scorso, di magnitudo M 6.0, che alle ore 3.36 ha colpito le province di Rieti e Ascoli Piceno, la sequenza sismica in Italia centrale ha superato le 40.500 scosse, interessando un’area molto estesa tra Lazio, Umbria, Marche e Abruzzo. A oggi, ore 14:00, 24 dicembre, sono circa 880 i terremoti di magnitudo compresa tra 3 e 450 quelli di magnitudo compresa tra 4 e 5; 5 quelli di magnitudo maggiore o uguale a 5 localizzati dalla Rete Sismica Nazionale dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV).

La mappa della sequenza sismica in Italia Centrale dal 24 agosto ad oggi, 24 dicembre. Le stelle sono gli eventi di magnitudo uguale o maggiore di 5.0.

Ricordiamo che i più forti terremoti, oltre quello con cui la sequenza è iniziata, sono: quello di magnitudo M 5.4, avvenuto alle ore 04:33 del 24 agosto; quelli del 26 ottobre delle ore 19.10 e delle 21.18 italiane, rispettivamente di magnitudo 5.4 e 5.9; infine l’evento del 30 ottobre, alle 07:40 ora italiana di magnitudo M 6.5

Data e Ora (UTC) Magnitudo Provincia
2016-10-30 06:40:17 6.5 Perugia
2016-10-26 19:18:05 5.9 Macerata
2016-10-26 17:10:36 5.4 Macerata
2016-08-24 02:33:28 5.4 Perugia
2016-08-24 01:36:32 6.0 Rieti

Sotto l’evoluzione della sequenza iniziata il 24 agosto 2016.

Numero giornaliero di terremoti e cumulata del numero degli eventi sismici nell’area interessata dalla sequenza sismica iniziata il 24 agosto.

Le analisi proseguono per seguire attentamente l’andamento delle scosse, per una mappatura di dettaglio degli effetti di superficie, per realizzare dei modelli di faglie che riescano a tener conto di tutti gli elementi osservati sul terreno e dal satellite.

%d blogger hanno fatto clic su Mi Piace per questo: