Archivi categoria: Sismicità Italia

Evento sismico Ml 4.2 (Mw 4.1) in provincia dell’Aquila, 1 gennaio 2019

Questa sera, alle ore 19:37 italiane del 1 gennaio 2019, è stato localizzato dalla Rete Sismica Nazionale dell’INGV un terremoto di magnitudo ML 4.2 (Mw 4.1), con epicentro 3 km ad ovest di Collelongo nel settore meridionale della provincia dell’Aquila, ad una profondità di 17 km. 

Epicentro del terremoto Ml 4.2 del 1 gennaio 2019 e la sismicità nell’area nelle ultime 24 ore (in arancione) e dal 1 gennaio 2018 (in blu).

L’evento è stato localizzato in un’area ad alta pericolosità sismica così come mostrato nella mappa di pericolosità sismica del territorio nazionale con accelerazione attese comprese tra 0.225 e 0.25 di g.

Dal Catalogo Parametrico dei Terremoti Italiani (versione 2015) notiamo che l’area epicentrale del terremoto di oggi è qualche chilometro a SUD dell’epicentro del forte terremoto del 13 gennaio 1915 di magnitudo stimata Mw 7.1 con risentimenti massimi fino al XI grado MCS.  Altri eventi sismici significativi nelle vicinanze sono avvenuti nel 1927 (Mw 5.2) nel 1922 (Mw 5.2). Il 28 febbraio 2015 fu registrato un evento di magnitudo Mw 4.1 poco a nord dell’epicentro di questa sera, nei pressi di Luco dei Marsi (AQ).

Secondo i dati accelerometrici, l’evento presenta accelerazioni di picco che corrispondono ad un’intensità strumentale su terreno roccioso fino al IV-V grado della scala MCS (http://shakemap.rm.ingv.it).

Il terremoto di questa sera è stato risentito in molti comuni tra le province dell’Aquila, Frosinone e Roma, ma anche nella provincia di Teramo. La mappa preliminare dei risentimenti del terremoto elaborata con gli oltre 1400 questionari è già disponibile sul sito http://www.haisentitoilterremoto.it ed in aggiornamento al seguente link.

Mappa del risentimento sismico in scala MCS (Mercalli-Cancani-Sieberg) che mostra la distribuzione degli effetti del terremoto sul territorio come ricostruito dai questionari on line. La mappa contiene una legenda (sulla destra). Con la stella in colore viola viene indicato l’epicentro del terremoto, i cerchi colorati si riferiscono alle intensità associate a ogni comune. Nella didascalia in alto sono indicate le caratteristiche del terremoto: data, magnitudo (ML), profondità (Prof) e ora locale. Viene inoltre indicato il numero dei questionari elaborati per ottenere la mappa stessa.

Fino a questo momento, ore 20.30, si registrano nell’area due eventi successivi di bassa magnitudo (Ml 0.9 e Ml 1.4).


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Evento sismico Ml 4.8 (Mw 4.9) in provincia di Catania del 26 dicembre 2018

L’evento avvenuto alle ore 03:19 italiane del 26 dicembre 2018 (ore 02:19 UTC) di magnitudo ML 4.8 (Mw 4.9) si colloca nell’area etnea, a circa 2 km a N di Viagrande (CT) e Trecastagni (CT), leggermente a Sud Est rispetto alle scosse che si sono verificate nei giorni precendenti sull’Etna. Il terremoto è a 5-6 km dalla costa ed è superficiale con una profondità stimata intorno a 1.2 Km. L’ubicazione dell’evento è molto simile a quella del terremoto del Catanese del 20 febbraio 1818.

Fino a questo momento (ore 10.00) dall’inizio dell’attività etnea (il 23 dicembre), complessivamente nella zona sono avvenute quasi 60 scosse con magnitudo superiore a 2.5 (3 dopo il terremoto di questa notte), la maggior parte sono localizzate nelle vicinanze delle scosse di magnitudo fra 4.0 e 4.3 avvenute il 24 dicembre.  Per quanto riguarda le numerose scosse di magnitudo inferiore che si sono verificate si rimanda ai costanti aggiornamenti prodotti dall’Osservatorio Etneo, così come per tutte le informative riguardanti gli aspetti vulcanologici.

978372-SequenceMulti.png

Da un punto di vista della sismicità storica (catalogo CPTI15), nell’area epicentrale attuale si è verificato il 20 febbraio 1818 in posizione molto simile, un terremoto cui è attributa una magnitudo Mw pari a 6.3. Nell’area le intensità massime per tale evento sono state valutate intorno al IX e IX-X in varie località della zona (Aci Sant’Antonio, Aci Santa Lucia, Aci Consolazione, Aci Catena, etc.). Inoltre questa regione ha sperimentato risentimenti massimi fino al X grado, a causa però dell’evento di magnitudo M 7.3, avvenuto l’11 gennaio 1693 nella Sicilia sud-orientale, con epicentro vicino a Siracusa.

978389-History

Terremoti storici nella regione con magnitudo stimata maggiore o uguale a 4.0. Dati: https://emidius.mi.ingv.it/CPTI15-DBMI15/

La mappa di pericolosità sismica (espressa in termini di accelerazione orizzontale del suolo con probabilità di eccedenza del 10% in 50 anni, riferita a suoli rigidi) include l’area epicentrale attuale in una zona a pericolosità molto alta con valori di accelerazione orizzontale compresi nell’intervallo 0.225-0.250 g, in prossimità di un settore a pericolosità molto alta che si estende dalla Calabria fino alla zona iblea.

978376-Hazard

Secondo i dati accelerometrici disponibili al momento, l’evento ha fatto registrare accelerazioni di picco che corrispondono ad un’intensità strumentale su terreno roccioso pari al VII grado della scala MCS (vedi mappa di scuotimento aggiornata).

intensity

La mappa del risentimento sismico (aggiornata alle ore 9.45 del 26 dicembre 2018), realizzata utilizzando gli oltre 1000 questionari arrivati a www.haisentitoilterremoto.it mostrano che l’evento è stato avvertito in tutta la Sicilia orientale, da Messina all’area siracusana, con massimo risentimento del VI-VII grado nell’area epicentrale, in buon accordo con la mappa di scuotimento calcolata.

21285011_mcs

Mappa del risentimento sismico in scala MCS che mostra la distribuzione degli effetti del terremoto (secondo la legenda colorata) sul territorio come ricostruito dai questionari on line. Con la stella viene indicato l’epicentro del terremoto, i cerchi colorati si riferiscono alle intensità associate a ogni comune. Viene inoltre indicato il numero dei questionari elaborati per ottenere la mappa stessa.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

L’eruzione laterale etnea iniziata il 24 dicembre 2018

da https://ingvvulcani.wordpress.com

La mattina del 24 dicembre 2018 è iniziata una nuova eruzione laterale dell’Etna. Il fenomeno è stato caratterizzato dall’intrusione di un dicco magmatico nell’alto fianco orientale del vulcano, che ha generato un intenso sciame sismico e vistose deformazioni del suolo.

Lo sciame sismico è iniziato alle ore 8:30 UTC, corrispondenti alle ore 9.30 locali, ed ha interessato l’edificio etneo in diversi settori, con epicentri prevalentemente localizzati in prossimità dei crateri sommitali e nella Valle del Bove, ed ipocentri a profondità comprese tra 0 e 3 km sotto il livello del mare. Nelle prime tre ore sono avvenute circa 300 scosse (figura 1); di queste gli eventi a maggiore energia sono stati localizzati principalmente in area sommitale. Successivamente la sismicità ha interessato la Valle del Bove con alcune scosse di magnitudo pari o superiore a 4.0.

Sala Operativa Figura 1
Figura 1 – Pannello di controllo della Sala Operativa dell’Istituto nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, che riprende lo sciame sismico (pannelli in basso) e le telecamere di videosorveglianza (pannelli in alto), la mattina del 24 dicembre 2018 (Foto di M. Neri).

L’inizio dello sciame sismico è coinciso con un aumento di intensità delle emissioni gassose dai crateri sommitali. Nel corso della mattinata, dalla Bocca Nuova e dal Cratere di Nord‐Est sono avvenute alcune isolate emissioni di cenere di colore bruno‐rossastro e grigio. Verso le ore 11.00 UTC (12 ora italiana) si è aperta una fessura eruttiva lunga circa 2 km ed orientata in direzione NNO-SSE (Figura 2).

Fessura eruttiva 24 dic 2018 Figura 2
Figura 2 – Fessura eruttiva apertasi in prossimità dell’orlo della parete occidentale della Valle del Bove, ripresa il 24 dicembre 2018 (foto di B. Behncke).

La fessura eruttiva si è estesa dalla base sud‐orientale del Nuovo Cratere di Sud‐Est alla parete occidentale della Valle del Bove, raggiungendo una quota minima di circa 2400 metri sul livello del mare. Una seconda, piccola fessura eruttiva si è aperta poco più a nord, a circa 3000 metri di quota, tra il Nuovo Cratere di Sud‐Est e il Cratere di Nord‐Est, ed ha prodotto quasi esclusivamente una debole attività stromboliana durata poche decine di minuti. Contestualmente, anche il Cratere di Nord‐Est e la Bocca Nuova hanno prodotto una continua attività stromboliana di intensità variabile. Nel complesso, la nube di cenere (figura 3) generata dall’insieme delle bocche eruttive ha prodotto un pennacchio di cenere scura molto consistente, spinto dal vento nel quadrante sud‐orientale del vulcano.

Nube eruttiva del 24 dic 2018 figura 3
Figura 3 – Nube eruttiva prodotta dall’apertura della frattura eruttiva, ripresa da Sud il 24 dicembre 2018 (foto di B. Behncke).

La cenere vulcanica è ricaduta prevalentemente nei dintorni di Zafferana Etnea e Santa Venerina (figura 4).

Cenere al suolo 24 dic 2018 figura 4
Figura 4 – Ricaduta di cenere vulcanica su un marciapiede di Zafferana Etnea, il 24 dicembre 2018 (Foto di B. Behncke).

Nel corso della sua propagazione, la fessura eruttiva apertasi in Valle del Bove ha alimentato alcune colate di lava che hanno attraversato interamente la parete occidentale della valle stessa, raggiungendone il fondo ed attestandosi, verso le ore 17.00 UTC del 24 dicembre, a quote variabili tra 1650 e 1800 metri circa (figura 5).

colate laviche 24 dic 2018 figura 5
Figura 5 – Colate laviche alimentate da una fessura eruttiva apertasi il 24 dicembre 2018 lungo la parete occidentale della Valle del Bove. (Foto di B. Behncke).

Nelle prime ore del 25 dicembre l’eruzione è ancora in corso. Una colata di lava continua a riversarsi nella Valle del Bove, alimentata dalla frattura eruttiva la cui bocca più bassa si trova a circa 2400 m di quota, lungo la parete occidentale della valle stessa. I Crateri Sommitali, ed in particolare la Bocca Nuova e il Cratere di Nord-Est, producono una continua attività stromboliana che alimenta un pennacchio gassoso ricco di cenere vulcanica. Continua anche lo sciame sismico che accompagna l’eruzione; da ieri mattina, in circa ventiquattro ore, sono avvenute oltre settecentocinquanta scosse sismiche registrate dalla rete sismica dell’INGV Osservatorio Etneo.

Cenni storici sulle eruzioni laterali in Valle del Bove

La  Valle del Bove è un’imponente depressione erosiva formatasi circa 10 mila anni fa attraverso un collasso di settore  che ha interessato il fianco orientale del vulcano. La valle è profonda oltre 1000 metri (lungo la sua parete occidentale), è larga poco più di 5 km e lunga circa 7.5 km, con asse allungato in senso ONO-ESE. Per la sua posizione e morfologia, la valle accoglie facilmente le colate laviche che sono eruttate dalla zona sommitale del vulcano, ed in particolare dal Nuovo Cratere di Sud‐Est e dalle sue bocche circostanti. Inoltre, la parete occidentale della valle ospita molte delle fratture eruttive che possono ascriversi, dal punto di vista strutturale, alle attività eruttive laterali dei settori settentrionali e meridionali dell’Etna, ovvero fratture eruttive orientale rispettivamente in senso SO‐NE e NE‐SO. Quando le eruzioni durano abbastanza a lungo (mesi o anni), le colate laviche hanno la possibilità di estendersi oltre il limite orientale della valle del Bove, minacciando quindi i centri urbani ivi ubicati.

In questa zona, la più recente eruzione importante è avvenuta nel 1991-1993, quando le lave hanno sepolto per intero la porzione meridionale della valle, colmato completamente la sottostante Val Calanna e poi minacciato seriamente l’abitato di Zafferana Etnea, arrivando a lambirne la periferia. In precedenza, altre eruzioni laterali pericolose per i centri abitati che sorgono sul versante orientale etneo sono avvenute nel 1989, 1979, 1950‐1951, 1851‐1853, 1689, 1446 e 1285.

I terremoti studiati dai satelliti: l’interferometria SAR

Sono più di venti anni che i satelliti per l’Osservazione della Terra ci permettono di studiare i terremoti. In particolare, i satelliti che equipaggiano un particolare sensore RADAR, il SAR, sono ormai utilizzati sistematicamente per misurare gli effetti che un terremoto produce sulla superficie terrestre, misurando con elevata precisione le deformazioni crostali indotte dal terremoto stesso.

Un RADAR (RAdio Detection And Ranging) è un sensore attivo, ovvero dotato di una propria sorgente di segnali elettromagnetici, nella banda di frequenza delle onde radio, che invia impulsi di onde equi-spaziati tra loro in base ad una frequenza di ripetizione o PRF (Pulse Repetition Frequency). Gli impulsi giungono dallo spazio sulla superficie terrestre e l’eco che da essa torna verso il sensore viene registrato, fornendo informazioni puntuali circa la distanza tra l’oggetto (o target) sulla superficie colpito dall’impulso elettromagnetico e le sue caratteristiche di retro diffusione del segnale stesso.

I RADAR che vengono usati per l’osservazione della Terra e lo studio dei terremoti (ma anche delle eruzioni vulcaniche) sono i Synthetic Aperture Radar (SAR), in italiano Radar ad Apertura Sintetica.

Il SAR è un RADAR che, posto su una piattaforma satellitare in movimento, sfrutta il percorso compiuto dal satellite lungo la sua orbita per simulare una antenna “sintetica” più grande, e di molto, rispetto a quella reale che permette di ottenere informazioni più dettagliate sul target rispetto ad un RADAR classico, sotto forma di immagine.

Esempio di immagine SAR acquista in Egitto nel sito archeologico delle piramidi (Dati del satellite TerraSAR-X dell’Agenzia Spaziale Tedesca). I pixel dell’immagine, in bianco e nero, riportano informazioni sull’energia retrodiffusa dall’impulso RADAR e sulla distanza tra target a terra e sensore SAR a bordo del satellite.

Trattandosi di un RADAR, il SAR può operare praticamente in qualsiasi condizione meteorologica, sia di giorno che di notte. Esistono numerose applicazioni che sfruttano le immagini SAR. Tra esse ha assunto un ruolo di grande rilievo lo studio dei movimenti del suolo. Per raggiungere tale scopo si applica al dato SAR una particolare tecnica di elaborazione del segnale denominata Interferometria SAR, o InSAR.

L’InSAR è stata sviluppata intorno alla fine degli anni ’80 e si basa sul principio che, se disponiamo di due immagini SAR di una stessa scena acquisite da due punti di osservazione leggermente diversi, è possibile estrarre l’informazione circa la distanza che ciascun punto (il pixel delle immagini) al suolo ha rispetto al SAR. In pratica possiamo dire che la tecnica InSAR consente di misurare le differenze di distanza, pixel per pixel, tra due immagini SAR, e di fornire l’immagine delle variazioni avvenute tra la prima e la seconda immagine SAR nell’area “fotografata”.

L’immagine che risulta dall’applicazione della tecnica InSAR è detta interferogramma. Questo comporta che se tra la prima e la seconda immagine alcuni pixel si sono spostati, ad esempio a causa di un terremoto, l’interferogramma evidenzierà le aree che hanno subito tali modifiche e ne misurerà l’entità.

La prima volta che venne usata l’interferometria SAR per lo studio di un terremoto fu nel 1992. Fu il caso del terremoto di Landers, California (USA), che generò una energia che i sismologi quantificarono con una magnitudo momento 7.2. Gli esperti misurarono spostamenti in superficie superiori anche a 5 metri. E per decine di chilometri intorno all’epicentro del sisma la superficie terrestre presentava numerose fratture e scarpate prodotte dal sisma. L’estensione dell’area interessata dalle deformazioni non poteva consentire di avere un quadro sinottico degli effetti del sisma semplicemente attraverso osservazioni in situ degli effetti. Landers fu il primo esempio di utilizzo dell’InSAR che fornì un’immagine completa e dettagliata di ciò che il sisma aveva prodotto (vedi figura sotto).

Su un’area di circa 100 km x 100 km, il satellite europeo ERS-1 misurò spostamenti del suolo variabili tra circa 3 cm fino a svariati metri. In un interferogramma le deformazioni prodotte dal sisma, dette deformazioni “cosismiche”, sono evidenziate con una serie di “linee di eguale spostamento” denominate in gergo “frange” (in inglese fringes). Immagine da Massonnet, D. et al., 1993.

Vennero usate una coppia di immagini SAR acquisite dal satellite europeo ERS-1 (European Remote Sensing satellite 1), il primo satellite per lo studio della Terra equipaggiato con un sensore SAR. Era stato lanciato nel 1991 dall’Agenzia Spaziale Europea (ESA).  Ad esso fece seguito nel 1995 il gemello ERS-2. ERS-1 ed ERS-2 aprirono la strada ad una serie di missioni satellitari dedicate allo studio del nostro pianeta con i sensori SAR, lanciati dalle agenzie spaziali di tutto il mondo.

Negli anni seguenti, a questo primo successo fecero seguito altre applicazioni. Tra esse possiamo ricordare il primo esempio di utilizzo della tecnica InSAR in Italia, quando il 26 settembre 1997 due forti terremoti (il primo alle ore 00:33 di magnitudo Mw 5.8 e il secondo alle ore 09:40 di magnitudo Mw 6.0) colpirono l’area al confine tra Umbria e Marche. I ricercatori italiani dell’INGV applicarono la tecnica InSAR ad una coppia di immagini ERS-2 acquisite prima e dopo il 26 settembre, ottenendo l’interferogramma che misurò i movimenti in superficie che si estendevano per decine di chilometri dall’epicentro del terremoto e che raggiungevano un massimo di 25 cm.

Anche i recenti terremoti che hanno interessato l’Italia centrale ad Amatrice e Norcia, a partire da agosto 2016, sono stati studiati con l’InSAR, sfruttando i dati acquisiti da più moderni SAR, molto più performanti in termini di accuratezza di misura e dettaglio spaziale, come quello a bordo della missione COMSO-SkyMed (https://www.asi.it/it/attivita/osservare-la-terra/osservazione-della-terra/cosmo-skymed) dell’Agenzia Spaziale Italiana, della missione ALOS-2 (https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2) della Giapponese JAXA e della innovativa piattaforma Sentinel-1 (https://sentinel.esa.int/web/sentinel/missions/sentinel-1) dell’ESA.

La mappa delle deformazioni co-sismiche superficiali causate dai due eventi di Amatrice-Accumoli e Norcia (magnitudo momento 6.0 e 5.3, rispettivamente), avvenuti, a distanza di circa un’ora, nella notte del 24 agosto 2016, ottenuta con i dati SAR del satellite Sentinel-1 dell’Agenzia Spaziale Europea. Lo spostamento del suolo ha raggiunto valori massimi di circa 20 cm, approssimativamente in abbassamento.

Sono moltissimi i lavori presenti in letteratura scientifica che documentano le grandi potenzialità dell’InSAR, e sempre più numerose sono le applicazioni che ne mostrano l’utilità in casi pratici di impiego. Possiamo quindi affermare senza dubbio che l’InSAR ha assunto un ruolo di assoluto rilievo tra le tecniche di studio utilizzate nelle Scienze della Terra.

A cura di Christian Bignami (INGV – Osservatorio Nazionale Terremoti).

Referenze

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142. https://doi.org/10.1038/364138a0


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Hai Sentito Il Terremoto: il progetto di “citizen seismology” dell’INGV per contribuire attivamente alla ricerca scientifica

Sempre più spesso si sente parlare di “citizen science”, ovvero della partecipazione volontaria e attiva dei cittadini alla raccolta o all’analisi di dati scientifici. Ma qual è il contributo di un volontario della “citizen seismology”? E’ quello di dare informazioni sugli effetti causati dal terremoto alle persone e alle cose. I dati vengono poi elaborati da un istituto di ricerca per studiare la distribuzione degli effetti sul territorio e per assegnare i valori di intensità, che sono funzione dello scuotimento del suolo, nei centri abitati.

Ci si potrebbe chiedere perché al giorno d’oggi si continui a raccogliere dati sul terremoto in maniera indiretta, ovvero ad utilizzare l’osservazione degli effetti per risalire all’intensità dello scuotimento provocato dal sisma, e non si preferiscano invece le misurazioni fatte dagli strumenti. La risposta sta nel fatto che il terremoto è un fenomeno tremendamente vario e complicato e che per indagare in maniera adeguata tale variabilità ci sarebbe bisogno di un gran numero di strumenti distribuiti su tutto il territorio nazionale con enormi spese di installazione e gestione. Un altro motivo fondamentale per l’utilizzo di queste informazioni è la continuità con il passato. Non si deve infatti dimenticare il contributo dato dagli studiosi che riconobbero nell’osservazione degli effetti, effettuata da un esperto, un elemento fondamentale per lo studio dei terremoti, tra questi Giuseppe Mercalli che migliorò una delle precedenti scale di misura dell’intensità. Questa scala, perfezionata successivamente da Adolfo Cancani e August Heinrich Sieberg, porta il nome di Mercalli-Cancani-Sieberg (Scala MCS, detta anche, brevemente, Scala Mercalli) e misura l’intensità degli effetti prodotti da un terremoto su persone, cose, edifici e ambiente in una località. L’elevata sismicità dell’Italia ed il lavoro di molti esperti sul campo hanno portato alla costruzione di un grande catalogo delle intensità MCS dei terremoti del passato (Database Macrosismico Italiano, DBMI). Il valore di intensità Mercalli viene ancora oggi assegnato ad una località in seguito all’osservazione degli effetti da parte di personale esperto (in genere per i terremoti che producono danno) o sulla base di analisi statistiche dei dati forniti dai cittadini. In questo modo i dati del presente possono essere confrontati direttamente con quelli raccolti quando gli strumenti non esistevano ancora.

L’INGV dal 1997 gestisce un sito internet per raccogliere i dati sugli effetti dei terremoti in Italia tramite la partecipazione volontaria dei cittadini e, dal 2007, mette a disposizione di tutti, in tempo reale, le mappe degli effetti macroscopici dei terremoti (chiamate per questo “macrosismiche”; Figura 1) ottenute con tali dati [Tosi et al., 2015].

Figura1

Figura 1 – Mappa dell’intensità macrosismica in Scala MCS del terremoto del 16 agosto 2018  (magnitudo Mw 5.1).

Chiunque si può collegare al sito www.haisentitoilterremoto.it sia per avere informazioni che per eventualmente descrivere la propria esperienza rispondendo a delle semplici domande su, ad esempio, l’intensità della vibrazione percepita, l’oscillazione dei lampadari o la caduta di soprammobili. Queste informazioni sono elaborate da sistemi automatici in tempo reale per assegnare a ogni comune l’intensità in Scala Mercalli o nella Scala Macrosismica Europea (EMS).

E’ possibile anche iscriversi al sito per diventare un corrispondente di Hai Sentito il Terremoto. Un corrispondente è subito informato, tramite e-mail, sui terremoti avvenuti entro una opportuna distanza dal luogo indicato al momento dell’iscrizione in modo da poter eventualmente contribuire tempestivamente fornendo la propria segnalazione. La maggior parte delle e-mail inviate sono relative a piccoli terremoti che vengono percepiti in modo lieve solo dalle persone che si trovano vicino all’epicentro, ma anche i dati su questi eventi sono importanti perché consentono di caratterizzare la diversa risposta del territorio al passaggio delle onde sismiche. Ugualmente importanti sono le segnalazioni di chi non ha avvertito quel particolare terremoto, in quanto permettono di circoscrivere l’area di risentimento e di definire i bassi gradi di intensità, per i quali è importante conoscere la percentuale di persone che hanno percepito lo scuotimento. Per questo motivo, anche chi non ha avvertito nulla è invitato a compilare il questionario a seguito della nostra richiesta.

Utilizzando i questionari compilati dalla popolazione, finora più di un milione, è stato possibile comprendere alcuni aspetti del fenomeno sismico. Ad esempio, studiando i piccoli scuotimenti è stato possibile misurare la differenza tra gli effetti osservati ai piani alti e ai piani bassi delle case, che risulta essere minore di quella precedentemente stimata [Sbarra et al., 2012a], o la risposta di edifici di diversa altezza rispetto alla magnitudo del terremoto [Sbarra et al., 2015], mostrando, in accordo con le leggi sulla risonanza, che nei piccoli eventi di magnitudo inferiore a 3.5 i risentimenti sono maggiori nei palazzi bassi (1 o 2 piani) che non in quelli alti (da 7 a 10 piani, vedi Figura 2). E’ stato poi evidenziato [Sbarra et al., 2014] che l’essere fermi o in movimento influenza la percezione ancora di più rispetto al piano dell’edificio in cui ci si trova (Figura 3).

Figura2

Figura 2 – Medie delle differenze di intensità macrosismica osservata agli ultimi piani di edifici bassi (triangoli) e alti (stelle), con l’indicazione del numero di dati utilizzati, in funzione della magnitudo del terremoto [fonte: Sbarra et al,. 2015].

Figura3

Figura 3 – Percentuale di persone che hanno percepito il terremoto per ogni grado d’intensità EMS a seconda della condizione e del luogo nei quali si trovava l’osservatore [fonte: Sbarra et al., 2014].

Utilizzando le risposte del questionario è inoltre possibile studiare le zone soggette a particolare amplificazione o attenuazione delle onde sismiche. Analizzando, ad esempio, come sono stati avvertiti a Roma i principali terremoti della sequenza che ha interessato L’Aquila nel 2009 [Sbarra et al, 2012b], è stata prodotta la mappa, in Figura 4, delle aree che hanno mostrato intensità macrosismiche leggermente maggiori (in rosso) o leggermente minori (in verde) rispetto alla media del comune (in giallo). La causa di tale differenza è probabilmente da ascriversi alla costituzione geologica della zona. Infatti lo studio ha evidenziato, oltre alla già nota area di amplificazione in corrispondenza delle alluvioni del Tevere, una nuova area in corrispondenza del Graben del Paleotevere, un’area a Nord-Est di Roma dove un tempo passava il Tevere prima che fosse deviato dalle colate laviche dei Colli Albani.

Figura4

Figura 4 – Mappa dei residui di intensità della città di Roma [fonte: Sbarra et al., 2012b].

Le osservazioni dei cittadini sono utilizzate anche nella Sala di Sorveglianza Sismica dell’INGV: le segnalazioni che arrivano sul sito di Hai Sentito Il Terremoto sono infatti disponibili in tempo reale in quanto estremamente utili per valutare la percezione degli effetti del terremoto sul territorio.

Il raggiungimento di questi risultati è stato possibile attraverso il contributo volontario di centinaia di migliaia di persone, che in questo modo sono effettivamente parte integrante della nostra ricerca scientifica.

A cura di Patrizia Tosi, Paola Sbarra e Valerio De Rubeis (INGV – Roma1)


Riferimenti bibliografici

Sbarra P., Tosi P., De Rubeis V. and Rovelli A. (2012a), Influence of observation floor and building height on macroseismic intensity, Seismol. Res. Lett., 83, 261-266, doi: 10.1785/​gssrl.83.2.261.

Sbarra P., De Rubeis V., Di Luzio E., Mancini M., Moscatelli M., Stigliano F., Tosi P. and Vallone R. (2012b), Macroseismic effects highlight site response in Rome and its geological signature, Nat. Hazards, 62, 425-443, doi: 10.1007/s11069-012-0085-9.

Sbarra, P., P. Tosi, and V. De Rubeis (2014), How Observer Conditions Impact Earthquake Perception, Seismological Research Letters, 85, 306-313, doi: 10.1785/0220130080.

Tosi, P., P. Sbarra, V. De Rubeis, and C. Ferrari (2015) Macroseismic intensity assessment method for web-questionnaires, Seismological Research Letters, 86, 985-990, doi: 10.1785/0220140229.

Sbarra P., A. Fodarella, P. Tosi, V. De Rubeis, and A. Rovelli (2015), Difference in shaking intensity between short and tall buildings: known and new findings, Bull. Seism. Soc. Am., 105, 1803-1809, doi: 10.1785/0120140341.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

%d blogger hanno fatto clic su Mi Piace per questo: