Archivi categoria: INGV

Il Presidente della Repubblica Sergio Mattarella in visita all’Istituto Nazionale di Geofisica e Vulcanologia

L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) ha accolto nella sua sede romana il Presidente della Repubblica Sergio Mattarella, in visita per la prima volta nella storia dell’Ente.

Presenti anche il sottosegretario alla presidenza del Consiglio Maria Elena Boschi e il sottosegretario all’Istruzione Vito De Filippo.

Il Presidente della Repubblica Sergio Mattarella nel corso del suo intervento ha espresso apprezzamento e riconoscenza per le attività dell’Istituto e ha ringraziato coloro che vi operano e coloro che lo guidano: ricercatori, tecnologi, tecnici, amministrativi, tutti coloro che sui vari versanti e sui vari fronti svolgono attività di grande eccellenza in questo luogo.

“Oggi è un giorno importante per l’INGV, il principale ente di ricerca italiano per lo studio delle geoscienze e componente del sistema di protezione civile per la pericolosità sismica e vulcanica”, dichiara il Presidente INGV Carlo Doglioni. “Siamo onorati della visita del Presidente della Repubblica Sergio Mattarella che ha voluto conoscere da vicino lo straordinario lavoro di questa comunità scientifica. L’Istituto è articolato in 3 Dipartimenti tematici, Terremoti, Vulcani e Ambiente, che coordinano l’attività scientifica di 9 Sezioni, distribuite in 26 sedi su tutto il territorio nazionale”.

Il Capo dello Stato è stato accolto dal Presidente dell’INGV e dal Direttore Generale Maria Siclari; con loro ha visitato la Sala di Sorveglianza Sismica e Allerta Tsunami, in collegamento anche con le Sale Operative dell’Osservatorio Vesuviano e dell’Osservatorio Etneo, che si trovano rispettivamente nelle sezioni di Napoli e Catania dell’Istituto. Il Presidente Mattarella ha avuto modo così di seguire in diretta le attività di monitoraggio e sorveglianza sismica, vulcanica e di allerta tsunami dell’Ente.

“Come INGV, siamo sentinelle attente del respiro della terra, ma non spettatori inerti degli eventi naturali: dobbiamo, vogliamo conoscerli sempre più, per scoprirne i segreti più intimi, che devono gradualmente essere tradotti in un livello più maturo di resilienza, per dare le informazioni più corrette per un’edilizia adeguata alla pericolosità sismica, per contribuire a ridurre il rischio vulcanico, per salvaguardare l’ambiente, il clima e, perché no, trovare nuove forme meno inquinanti di energia. Guardare al passato per capire il presente e progettare il futuro”, ha aggiunto il Presidente Doglioni.

In dono al Presidente Mattarella, l’INGV ha offerto una copia del sismogramma del terremoto del Belìce del 1968. Ricorre, infatti, quest’anno il cinquantenario del terremoto più forte che colpì la Valle del Belìce nella notte del 15 gennaio del 1968, un’area fino ad allora considerata a bassa pericolosità sismica.

La visita del Presidente della Repubblica all’INGV è un incoraggiamento a continuare a svolgere al meglio il nostro compito di ricerca e di sorveglianza; l’Istituto è proiettato verso una progettualità scientifica sempre più di frontiera nello studio della struttura e della dinamica della Terra, della prevenzione e mitigazione dei rischi naturali, al servizio degli Italiani e della cultura”.


Vedi anche Comunicato Stampa INGV del 24 gennaio 2018

L’analisi della sequenza sismica del Sannio-Matese del 2013-2014 in un articolo su Science Advances

L’articolo scientifico pubblicato qualche giorno fa su Science Advances (Di Luccio et al., 2018, Seismic signature of active intrusions in mountain chains Sci. Adv. 2018; 4 : e1701825) ha sollevato grande interesse nei media e ha generato numerosi dibattiti.

Tuttavia, come talvolta accade in queste occasioni, ci sono state imprecisioni che hanno generato paure e allarmi ingiustificati. Cerchiamo quindi di chiarire alcuni punti importanti per una corretta comprensione dei risultati e del significato di questa ricerca.

Lo studio si basa sull’analisi della sequenza sismica del Sannio-Matese che è iniziata il 29 dicembre 2013. Il terremoto più forte ha avuto una magnitudo (Mw) pari a 5.0 ed una profondità di 22 km.

La sequenza sismica nel Sannio-Matese del 2013-2014. In rosso gli eventi del dicembre 2013, in giallo quelli del 2014.

Questo ed altri eventi registrati durante la sequenza presentavano delle caratteristiche atipiche rispetto ai segnali che si è soliti osservare in Appennino. Innanzitutto la loro profondità ben oltre i 10 km, mentre in quest’area sono generalmente più superficiali, e poi la presenza di basse frequenze nei sismogrammi, in analogia con quanto accade per i terremoti che si registrano in aree vulcaniche e/o idrotermali dovuti al movimento di fluidi. Inoltre, l’evoluzione temporale della sequenza dimostra che le repliche dell’evento principale migrano verso l’alto e si spostano verso sud-est nelle prime ore/giorni dopo l’evento di magnitudo 5 del 29 dicembre, disponendosi ai bordi di una zona priva di terremoti.

Queste caratteristiche, insieme ad altri fenomeni come il rilascio, negli acquiferi presenti nelle vicinanze dell’area della sequenza, di anidride carbonica (CO2) di origine profonda, ovvero che viene dal mantello e non legata alle reazioni che coinvolgono i carbonati presenti nella zona, una significativa anomalia geotermica e un’elevata attenuazione sismica (riduzione dell’ampiezza dell’onda sismica con la distanza) dell’area hanno portato a ipotizzare che ci sia stata un’intrusione di magma (roccia fusa) alla base della crosta in Appennino meridionale, sotto il massiccio del Matese. La presenza di fluidi magmatici di origine profonda (mantello) in Appennino Meridionale era stata già ipotizzata 18 anni fa in uno studio di Italiano et al. (2000) basato su rapporti isotopici dell’elio riscontrato nelle emissioni gassose e dei flussi di calore.  

I movimenti associati al rilascio di CO2 dall’intrusione possono aver prodotto la sequenza sismica in oggetto. Questo studio non ha affrontato le problematiche legate, anche indirettamente, alla valutazione e quantificazione della pericolosità sismica, già nota per l’area.

Il Sannio-Matese rientra nella zona a più elevata pericolosità sismica d’Italia sulla base dell’Ordinanza del Consiglio dei Ministri del 28 aprile 2006 (G.U. n.108 del 11/05/2006), in cui vengono specificati i valori di accelerazione per ogni area del territorio nazionale. Sono numerosi i terremoti storici di magnitudo elevata (anche con una energia 1000 volte maggiore di quella del terremoto qui studiato) che hanno colpito quest’area, tra questi il terremoto del 5 giugno 1688, (Mw=7.06) e i terremoti del 1456 (Mw=7.19), come ben evidenziato dal Catalogo Parametrico dei terremoti Italiani CPTI15.

Questo studio quindi non cambia la pericolosità sismica dell’area che è molto elevata.

Per quanto riguarda la pericolosità vulcanica, si esclude che il processo che registrato nel dicembre 2013 sia riconducibile alle fasi, anche iniziali, di formazione di un vulcano nel Sannio-Matese. Non vi è sismicità superficiale, non vi sono manifestazioni idrotermali come quelle presenti, invece, ai Campi Flegrei, non vi sono deformazioni del suolo significative e rapide a scala chilometrica, non vi sono cambi morfologici dovuti a sollevamenti repentini e non vi sono, infine, segnali riconducibili alla continua alimentazione di magmi, anche in profondità.

Su una scala dei tempi geologici, e cioè tra decine di migliaia o centinaia di migliaia di anni, è possibile che un’attività vulcanica si sviluppi in questa area. Ma le condizioni geologiche perché ciò avvenga non sono, al momento, soddisfatte poiché la pressione del magma da noi determinata sulla base dei dati sismici e strutturali disponibili, cioè sui meccanismi di rottura delle rocce e sullo stress cui è sottoposta la crosta del Matese, è di gran lunga inferiore di quella richiesta per una risalita verticale da 15-20 km di profondità fino alla superficie.

Concludendo, la novità scientifica di questo articolo  può essere così sintetizzata: per la prima volta si sono registrati in un catena montuosa i segnali di una risalita, alla base della crosta, di fluidi profondi possibilmente associati a magma. Il passo successivo è studiare altre catene montuose (Himalaya, Ande, Zagros, etc.) dove i processi che abbiamo ipotizzato avvenirein Appennino meridionale potrebbero essere rilevati a più grande scala.

a cura di Guido Ventura e Francesca di Luccio (INGV – Roma 1).


Bibiografia

Catalogo Parametrico dei terremoti Italiani CPTI15 (Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (eds), 2016. CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes; Istituto Nazionale di Geofisica e Vulcanologia).

Italiano et al. – Geochemical evidence of melt intrusions along lithospheric faults of the Southern Apennines, Italy: Geodynamic and seismogenic implications, J. Geophys. Res., 105(B6), 2000,  13569–13578, doi:10.1029/2000JB900047

Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

La deformazione del suolo ad Ischia rilevata dalla Rete tiltmetrica

Il monitoraggio tiltmetrico: a cosa serve?

Il monitoraggio tiltmetrico rappresenta una delle tecniche più usate nel rilevamento della deformazione del suolo in aree vulcaniche, in quanto consente lo studio della cinematica delle aree vulcaniche avvalendosi della registrazione in continuo della variazione d’inclinazione della superficie terrestre nei luoghi in cui sono installati i tiltmetri.

E’ proprio la variazione dell’angolo di inclinazione (tilt), misurata da questi sensori, che consente di correlarla eventualmente alla deformazione indotta in superficie dai potenziali cambiamenti della pressione magmatica dovuti all’accumulo e/o allo spostamento di magma all’interno della struttura vulcanica o semplicemente dalla circolazione dei fluidi idrotermali (vedi Figura 1).

Figura 1 – Schema delle deformazioni del suolo registrate da un tiltmetro durante le fasi: pre-eruttiva (stage 1), eruttiva (stage 2) e post-eruttiva (stage 3); [Dvorak e Dzurisin, 1997]

Oltre al monitoraggio delle aree vulcaniche, le informazioni ottenute dallo studio dei segnali tiltmetrici hanno un vasto campo di applicazione che va dal controllo strutturale di grandi opere ingegneristiche come dighe, ponti, ecc., allo studio della marea crostale.

La variazione di tilt o ground tilt registrata da un tiltmetro è la variazione lungo una determinata direzione dello spostamento verticale, quindi una misura di come cambia la pendenza del suolo nel tempo. Lo spostamento verticale del suolo, invece, è misurabile con il GPS in maniera continua oppure mediante tecniche di interferometria SAR o anche attraverso livellazioni di alta precisione lungo linee altimetriche appositamente realizzate.

I sensori utilizzati dall’Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Vesuviano (INGV-OV) sono tiltmetri elettronici biassiali con trasduttore a bolla che misurano le variazioni di inclinazione del suolo lungo due direzioni ortogonali (indicate come X e Y nelle Figure 2a e 3).

Il trasduttore è costituito da un tubicino di vetro (uno per ogni asse) contenente un fluido elettrolitico e chiuso agli estremi da tre elettrodi inseriti in un circuito elettrico a ponte che, ogni qualvolta viene sbilanciato in seguito ad una rotazione (o ad una accelerazione) genera una tensione elettrica proporzionale all’entità del tilt (Figura 2b).

Nel monitoraggio delle componenti di inclinazione della deformazione del suolo vengono impiegati 3 tipi diversi di sensore: quelli analogici che possono essere di tipo superficiale o da pozzo (Figura 2a) e quelli digitali che sono solo da pozzo (Figura 3).

Figura 2 – a) Tiltmetri analogici. b) Principio di funzionamento del trasduttore inclinometrico.

Il monitoraggio tiltmetrico viene effettuato già da molti anni nelle aree vulcaniche campane ed attualmente questi segnali geofisici sono acquisiti da 3 Reti:

  • Rete tiltmetrica dei Campi Flegrei con 10 stazioni, di cui 4 attrezzate con sensori analogici di superficie, 3 attrezzate con sensori analogici da pozzo (Figura 2a) e 3 attrezzate con sensori biassiali digitali da pozzo di ultima generazione (Figura 3).
  • Rete tiltmetrica del Vesuvio costituita da 7 stazioni, di cui 3 attrezzate con sensori analogici di superficie e 4 attrezzate con sensori digitali da pozzo.
  • Rete tiltmetrica dell’Isola d’Ischia con 3 stazioni attrezzate con sensori digitali da pozzo.

Poiché i segnali registrati dai sensori di superficie (operanti in gallerie o pozzetti poco profondi) sono influenzati da fattori ambientali, come le variazioni di temperatura, la pressione, le precipitazioni e le variazioni della falda acquifera, che possono mascherare la reale deformazione misurata, negli ultimi anni sono stati utilizzati i sensori da pozzo di tipo digitale, calati in pozzi perforati a – 25 m dal piano campagna.

L’unità di misura angolare utilizzata in ambito tilmetrico è il µradiante (microradiante), equivalente ad uno spostamento verticale del suolo di 1 mm ad 1 km di distanza; poiché però sia i sensori tiltmetrici di superficie che quelli da pozzo misurano un campo sufficientemente vicino e quindi al massimo di qualche centinaio di metri, può essere considerata attendibile l’equivalenza di 1 µradiante ad uno spostamento di 0.5 mm a 500 m di distanza.

Rete Tiltmetrica di Ischia e specifiche tecniche

L’INGV- OV ha realizzato nell’aprile 2015 una rete di 3 tiltmetri sull’Isola di Ischia, nell’ambito del Progetto Vulcamed. La sua geometria è stata progettata considerando gli allineamenti strutturali, la morfologia dell’Isola [de Vita et al., 2010], l’andamento della deformazione del suolo dedotto dalle misure ottenute attraverso le campagne di livellazione geometriche di precisione effettuate in oltre 20 anni [Del Gaudio et al., 2011], nonché la fattibilità degli scavi [Aquino et al., 2014].

Le 3 stazioni tiltmetriche sono state installate nelle seguenti località:

  • Stazione ISC (settore NE), situata nel Comune di Ischia, in prossimità dell’Acquedotto EVI in località Montagnone Alto; il sensore è collocato in un deposito di piroclastiti che ricopre il duomo lavico di Montagnone;
  • Stazione BRN (settore SE), situata nel Comune di Barano d’Ischia, in Località Vateliero; il sensore è posizionato nella coltre eluvio-colluviale su depositi di frana e di piroclastici del Vateliero;
  • Stazione FOR (settore SW), situata nel Comune di Forio, in località Panza; il sensore è collocato nel tufo.

I 3 tiltmetri digitali da pozzo sono stati installati a profondità comprese tra 25 e 27 m dal piano campagna (Figura 3). I segnali acquisiti in digitale sono trasmessi al Centro di Monitoraggio dell’INGV- OV. Ogni stringa di dati contiene le componenti NS ed EW direttamente in µradianti, l’azimuth magnetico in gradi, la temperatura in °C, la data e l’ora, i minuti, i secondi, l’alimentazione in mV ed il numero di serie del sensore.

Ad Aprile 2015 è andata in funzione la rete di acquisizione dati ma, in considerazione del fatto che per i primi 30-40 giorni dall’installazione possono essere osservate delle derive sui segnali dovute al riassestamento dei pozzi perforati (indurimento del cemento e riequilibrio tensionale dei fori), i primi segnali tiltmetrici utili per la caratterizzazione della deformazione che interessa l’Isola sono stati raccolti a partire dal 1 Giugno 2015.

Figura 3 – Tiltmetro digitale Lily e componenti elettroniche

I segnali acquisiti con tiltmetri profondi

I segnali sono acquisiti ogni minuto, con la singola lettura mediata su 8000 campioni acquisiti ogni 0.0075 Hz, la precisione del clock interno è di 1.5 sec/mese ed il tempo viene sincronizzato con cadenza settimanale, risultando quindi un errore di ± 0.4 secondi.

I dati vengono trasmessi quotidianamente al Centro di Monitoraggio dell’INGV- OV e successivamente elaborati attraverso vari passaggi  riassumibili in 3 fasi principali:

  1. preprocessing: lettura dei dati aggiornati, eliminazione delle acquisizioni effettuate con tempi sbagliati; interpolazione lineare dei dati eventualmente mancanti e despiking dei segnali;
  2. processing: scelta del filtro adatto alla rappresentazione grafica dei segnali acquisiti e corretti, rappresentazione delle componenti spettrali dei segnali, rappresentazione grafica delle componenti NS e EW corrette, spettrogramma;
  3. studio del segnale: valutazione della direzione di tilting prevalente e confronto con altre stazioni, studio di eventuali anomalie in ampiezza e frequenza presenti nei segnali, interpretazione degli osservabili dal confronto con i dati acquisiti con altre metodologie geofisiche e geochimiche.

I dati non vengono soggetti ad alcun procedimento di filtraggio delle periodicità di tipo termico, data la profondità di installazione del sensore, a differenza delle stazioni di tipo superficiale [Ricco et al., 2003; Ricco et al., 2013].

Le caratteristiche delle stazioni tiltmetriche sono riportate in tabella:

Stazione Località Prof. (m) Fc (Hz) Coord. (Lat /Long) Quota (m. s.l.m.)
ISC Località Montagnone Alto, Comune di Ischia -25 0.017 40.74°

13.93°

173
BRN Località Vateliero, Comune di Barano d’Ischia -25 0.017 40.71°

13.93°

145
FOR Località Panza, Comune di Forio -27 0.017 40.71°

13.88°

157

Deformazione osservata attraverso i tiltmetri nel lungo periodo

La deformazione del suolo che interessa l’Isola di Ischia mostra un andamento di inclinazione polarizzato in direzione NNW, come si può evincere dalla Figura 4.

In essa è riportata la linea di costa dell’isola e le principali curve di livello, georeferenziate, sovrapposte ad un reticolo che rappresenta il piano bidimensionale delle inclinazioni (con asse Y+ orientato a N ed asse X+ orientato ad E) in cui ogni lato della maglia equivale ad una variazione tiltmetrica di 20 µradianti e ad una distanza di 500 m.

I 3 siti-stazione ISC, BRN e FOR, indicati con una freccia nera puntata verso il basso, sono contraddistinti da colori diversi come anche le curve che da essi hanno origine. Le curve rappresentano la variazione tiltmetrica cumulativa (odografo) a partire dal 1 Giugno 2015. Inoltre, la freccia nera puntata verso l’alto indica il verso della deformazione e convenzionalmente i settori di crosta terrestre in abbassamento rispetto alla posizione dei siti stazione.

Figura 4 – Variazione tiltmetrica cumulativa (odografo) registrato ai 3 siti-stazione della rete di Ischia nel biennio 2015-2017, filtrato delle periodicità inferiori a 10 giorni. L’origine di ogni vettore tilt è siglata con il nome del sito stesso ed indicata convenzionalmente con una freccia puntata verso il basso, mentre l’estremo libero è indicato con una freccia puntata verso l’alto. Il verso di ogni vettore (che indica settori di crosta terrestre in abbassamento) è univocamente definito dal suo estremo libero. I 3 siti-stazione ISC, BRN e FOR, indicati con una freccia nera puntata verso il basso, sono contraddistinti da colori diversi come anche le curve che da essi hanno origine: ISC (grigio), BRN (giallo) e FOR (verde).

In 27 mesi, dal 2015 al 2017 le 3 stazioni hanno misurato una variazione di tilt totale che ammonta a 145.3 µradianti ad ISC, 105.6 a BRN e 102.7 a FOR.

La stazione ISC, situata nel settore di NE ed a una quota maggiore alle altre, è quindi quella che si inclina di più, mentre si calcola una riduzione rispetto ad essa del 27% a BRN e del 29% a FOR.

Nei primi 8 mesi del 2017, invece i valori misurati sono stati: 47.1 µradianti ad ISC, 15.7 a BRN e 25 a FOR; ISC risulta sempre quella che si inclina maggiormente mentre la riduzione in ampiezza alle altre stazioni aumenta (67% a BRN e 47% a FOR).

Si può notare inoltre che, procedendo dal quadrante nord-orientale dell’Isola (stazione ISC) verso il settore meridionale (BRN) e poi verso quello sud-occidentale (FOR), la direzione dei vettori tilt resta praticamente costante seppur con qualche piccola rotazione; solo la stazione FOR esibisce inizialmente una direzione di tilting verso NW che negli ultimi 2 anni tende a riallinearsi con quella NNW di ISC.

La deformazione del suolo ricavata dal tilt (in un raggio di 500 m), equivale ad un abbassamento di più di 7 cm a NNW della stazione ISC, di 5 cm a NNW della stazione BRN e di 5 cm a NNW della stazione FOR.

Il campo di spostamento del suolo misurato negli anni passati (livellazioni effettuate negli ultimi 30 anni) evidenzia estesi fenomeni deformativi nella zona centro-meridionale (Serrara-Fontana) e nord-occidentale (Lacco Ameno località Fango) con velocità di subsidenza leggermente inferiori al cm/anno [Del Gaudio et al., 2011] (Figura 5a,b).

Dal confronto, quindi, tra dati di inclinazione e spostamento verticale del suolo si desume che le direzioni di tilting sono coerenti con tale andamento di deformazione, mentre le velocità attuali di subsidenza, ricavate dai dati tiltmetrici, risultano raddoppiate rispetto a quelle misurate fino al 2010.

Figura 5 – Andamento deformativo dell’Isola di Ischia misurato attraverso le livellazioni di precisione dal 2003 al 2010. a) Variazioni di quota lungo la linea “Costiera”. b) Variazioni di quota lungo la linea “Borbonica”.

Deformazione osservata attraverso i tiltmetri ed associata al terremoto del 21 agosto 2017

L’evento sismico del 21 agosto 2017, ore 20:57:52 italiane, è stato registrato dalle 3 stazioni tiltmetriche i cui segnali hanno mostrato molteplici peculiarità.

La stazione ISC, la più vicina all’area epicentrale, nell’intervallo temporale 20:56÷21:03, ha subito un tilt cosismico di 6.3 µradianti in direzione NW. Tale stazione che già nei 2 anni precedenti si inclinava in direzione NNW in misura notevole, durante l’evento sismico si è definitivamente inclinata in maniera permanente lungo una direzione allineata con l’epicentro (Figura 6a, b).

Figura 6 – Variazione tiltmetrica registrata alla stazione ISC. a) Sono riportate le singole componenti NS ed EW registrate nell’intervallo temporale 20:51÷20:59. b) Sono mostrate le nuvole di punti nella griglia delle inclinazioni che rappresentano la variazione tiltmetrica (in µradianti) registrata dal 1 luglio 2017 al 21 agosto 2017; si notano 2 concentrazioni spaziali di punti (clusters) separate tra loro in corrispondenza dell’arrivo del treno di onde generato dal terremoto, l’offset spaziale si configura pertanto come deformazione cosismica permanente. Le frecce gialle sovrapposte corrispondono al vettore tilt apparente calcolato tra le 20:56 ed i minuti successivi, mentre la freccia rossa rappresenta il tilt cosismico. La freccia nera indica la rotazione della direzione di tilting.

Analizzando la figura 6b, in cui è mostrata nella griglia delle inclinazioni la variazione tiltmetrica totale registrata alla stazione ISC dal 1 Luglio 2017 al 21 Agosto, sono evidenti 2 nuvole di punti: una prima nuvola allineata in direzione NS relativa alla deformazione registrata fino a 2 minuti prima del terremoto mentre la seconda, più piccola e di forma ovale, si osserva a partire dal quinto minuto successivo all’evento, quando cioè il sensore tiltmetrico ha raggiunto di nuovo il suo equilibrio meccanico.

Si osserva inoltre che il punto-stazione subisce una variazione di tilt apparente (con componente di accelerazione orizzontale) in direzione SSW un minuto prima dell’evento (20:57), una seconda variazione in direzione SW durante l’evento stesso e successivamente si inclina permanentemente a NW, mostrando una chiara rotazione in senso orario della direzione di tilting, mostrata in Figura 6b con una freccia nera.

Figura 7 – Variazione tiltmetrica registrata alla stazione BRN. a) Sono riportate le singole componenti NS ed EW registrate nell’intervallo temporale 20:51÷20:59. b) E’ mostrata la nuvola di punti nella griglia delle inclinazioni che rappresenta la variazione tiltmetrica (in µradianti) registrata dal 1 luglio 2017 al 21 agosto; si osserva l’assenza di offset spaziale durante l’evento sismico e di conseguenza l’assenza di deformazione cosismica permanente. Le frecce gialle sovrapposte corrispondono al vettore tilt apparente calcolato tra le 20:56 ed i minuti successivi, mentre la freccia rossa rappresenta il tilt cosismico. La freccia nera indica la rotazione della direzione di tilting.

La stazione BRN (distante in direzione SE dall’epicentro) che nei 2 anni precedenti già si inclinava in direzione NNW, ha subito un minimo incremento di tilt nelle 2 componenti (Figura 7a). Anche in questo caso, durante l’evento, il punto-stazione subisce una variazione di tilt in direzione SW e successivamente mostra una rotazione in senso antiorario, per poi rientrare nella nuvola di punti. In Figura 7b la rotazione antioraria della direzione di tilting viene mostrata con una freccia nera.

La stazione FOR (posizionata in direzione SW rispetto all’epicentro) che nei 2 anni precedenti si inclinava come le altre in direzione NNW, ha subito nell’intervallo temporale 20:56÷21:03 un tilt cosismico di 5.3 µradianti in direzione W.

Figura 8 – Variazione tiltmetrica registrata alla stazione FOR. a) Sono riportate le singole componenti NS ed EW registrate nell’intervallo temporale 20:51÷20:59. b) Sono mostrate le nuvole di punti nella griglia delle inclinazioni che rappresentano la variazione tiltmetrica (in µradianti) registrata dal 1 luglio 2017 al 21 agosto; si notano 2 concentrazioni spaziali di punti (clusters) separate tra loro in corrispondenza dell’arrivo del treno di onde generato dal terremoto, l’offset spaziale si configura pertanto come deformazione cosismica permanente. Le frecce gialle sovrapposte corrispondono al vettore tilt apparente calcolato tra le 20:56 ed i minuti successivi, mentre la freccia rossa rappresenta il tilt cosismico. La freccia nera indica la rotazione della direzione di tilting.

Inoltre, analizzando la Figura 8b, come per il segnale relativo alla stazione ISC, si evidenziano 2 nuvole di punti: la prima allineata in direzione NS relativa alla deformazione registrata fino a 2 minuti prima del terremoto mentre la seconda, più piccola e di forma circolare, si osserva a partire dal quinto minuto successivo all’evento, quando cioè il sensore tiltmetrico ha raggiunto di nuovo il suo equilibrio meccanico.

Si osserva inoltre che il punto-stazione subisce una forte variazione di tilt in direzione SSE un minuto prima dell’evento (20:57) (come per i segnali della stazione ISC), una ulteriore variazione in direzione NNW durante l’evento stesso e successivamente si inclina permanentemente ad W, esibendo una chiara rotazione della direzione di tilting in senso antiorario, mostrata in Figura 8b con una freccia nera.

Conclusioni

L’andamento di inclinazione del suolo dell’Isola di Ischia, desunto delle variazioni di tilt misurate nei 3 punti stazione dal 2015 ad oggi, mostra un abbassamento verso NNW generalizzato ma più pronunciato alla stazione ISC, situata a NE dell’Isola.

L’evento sismico del 21 Agosto registrato dai 3 tiltmetri, ha mostrato una deformazione cosismica permanente alle stazioni poste ad Est ed a SW dell’area epicentrale. La stazione ISC, più vicina all’epicentro, ha subito un tilt cosismico di 6.3 µradianti in direzione NW (Figure 6 e 9) e la stazione FOR ha registrato un tilt cosismico di 5.3 µradianti in direzione W (Figure 8 e 9), mentre la stazione BRN, situata a SE dall’area epicentrale ha mostrato un minimo incremento di tilt (Figure 7 e 9).

Rispetto agli andamenti strutturali dell’Isola, il tilt cosismico di ISC è legato indubbiamente alla subsidenza a N del M. Epomeo e quindi alla deformazione dell’area epicentrale stessa; quello subito dalla stazione FOR, situata nel settore di SW è attribuibile alla posizione del sensore stesso, situato alla base di un sistema di faglie che degradano anch’esse verso W e che sono ben lubrificate dalla circolazione idrica sottostante.

Figura 9 – Deformazioni tiltmetriche cosismiche permanenti osservate alla stazioni ISC (freccia rossa) e FOR (freccia verde). La stella in blu indica l’epicentro del terremoto del 21 Agosto.

Inoltre, è evidente dai segnali tiltmetrici delle 3 stazioni un tilting notevole in direzione Sud sia 1 minuto prima che durante il terremoto (fatta eccezione per FOR), all’interno di una rotazione dello stesso in senso orario a NE ed in senso antiorario a SE ed a SW (Figure 6, 7 e 8). La cerniera della deformazione registrata nell’intervallo temporale 20:51÷20:59 sembra essere proprio BRN, in quanto è l’unica delle 3 stazioni a subire una rotazione del vettore che non si conclude con un tilt cosismico (Figura 9) [Di Napoli et al., 2009]; l’assenza di deformazione permanente a BRN è dovuta alla sua maggiore distanza dall’epicentro.

Figura 10 – Tilting registrato dalle 3 stazioni nel 2017. I triangolini neri sovrapposti al tilt cumulativo indicano i 4 eventi sismici occorsi il 21, 23 e 30/8. La traslazione verso W delle direzioni di tilting alle stazioni FOR ed ISC dopo l’evento del 21/8 è solo apparente ed è dovuta alla rappresentazione bidimensionale del tilt.

Poiché i segnali tiltmetrici sono sensibili anche alle accelerazioni orizzontali del terreno è ragionevole supporre che le forti variazioni di tilt registrate possano avere anche una componente di accelerazione orizzontale. Si osserva inoltre che, dopo il terremoto del 21 Agosto ed i tre eventi successivi del 23 e 30 Agosto, le direzioni preferenziali di tilting sono rimaste pressoché invariate alle 3 stazioni come evidenziato in Figura 10. La traslazione verso W di tali direzioni alle stazioni FOR ed ISC è solo apparente ed è dovuta alla deformazione cosismica permanente rappresentata nel piano bidimensionale delle inclinazioni.

a cura di Ciro Ricco, Vincenzo Augusti, Giovanni Scarpato e Ida Aquino, INGV-Osservatorio Vesuviano.


Bibliografia

AGI, (2005). LILY Self-Leveling Borehole Tiltmeter. User’s Manual, no. B-05-1003, Rev. D.

Aquino I., Ricco C., Del Gaudio C., Augusti V., Scarpato G. (2016). Potenziamento delle reti tiltmetriche nell’area vulcanica campana: Rapporto sull’attività svolta nell’ambito del progetto Vulcamed. Rapporti Tecnici INGV anno 2016 numero 348.  ISSN 2039-7941.

De Vita S., Sansivero F., Orsi G., Marotta E., Piochi M., (2010). Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 k.y. The Geological Society of America Special Paper 464: 193-241

Del Gaudio C., Aquino I, Ricco C., Serio C. (2011). Monitoraggio Geodetico dell’Isola d’Ischia: Risultati della Livellazione Geometrica di Precisione Eseguita a Giugno 2010. Quaderni di Geofisica n. 87 anno 2011. ISSN 1590-2595

Di Napoli R., Martorana R, Orsi G., Aiuppa A., Camarda M., De Gregorio S., Cagliano Candela E., Luzio D., Messina N., Pecoraino G., Bitetto M., de Vita S., Valenza M. (2011), The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study, Geochem. Geophys. Geosyst., 12, Q07017, doi:10.1029/2010GC003476.

Dvorak J., Dzurisin D. (1997). Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Reviews of Geophysics, 35, 3 / August 1997. DOI: 10.1029/97RG00070

Ricco C., Aquino I., Del Gaudio C. (2003). Ground tilt monitoring at Phlegraean Fields (Italy): a methodological approach. Annals of Geophysics 46(6): 1297-­1314. ISSN: 1593-5213

Ricco C., Aquino I., Borgstrom S.E.P., Del Gaudio C. (2013). 19 years of tilt data on Mt. Vesuvius: state of the art and future perspectives.  Annals of Geophysics  vol. 56 n. 4  2013. DOI 10.4401/ag-6459.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Il Centro Allerta Tsunami e l’esercitazione NEAMWave17

Il 2 novembre 2017 si è svolta in Italia l’esercitazione internazionale sul rischio tsunami NEAMWave17, che tra il 31 ottobre e il 3 novembre ha interessato la regione denominata NEAM (Atlantico nord-orientale, Mediterraneo, Mar di Marmara e Mar Nero). L’esercitazione, la terza organizzata dalla International Oceanographic Commission (IOC) dell’Unesco, aveva l’obiettivo di testare le capacità operative del sistema di allertamento maremoti nella regione, di coinvolgere gli Stati membri e soprattutto di migliorare la capacità di affrontare il rischio tsunami.

L’esercitazione prevedeva quattro differenti scenari simulati, che hanno interessato, in giorni diversi, tre aree del Mediterraneo e un’area dell’Atlantico nord-orientale. Sono stati coinvolti quattro Tsunami Service Provider: il CENALT (CENtre d’ALerte aux Tsunamis, Francia), il NOA (National Observatory of Athens, Grecia), il CAT (Centro Allerta Tsunami dell’Istituto Nazionale di Geofisica e Vulcanologia, Italia), il KOERI (Kandilli Observatory and Earthquake Research Institute, Turchia), e l’IPMA (Instituto Português do Mar e da Atmosfera, Portogallo), candidato come Tsunami Service Provider per il Portogallo. Il CAT-INGV è stato di recente accreditato come Tsunami Service Provider per il Mediterraneo.

Per il CAT e il NOA, quella del 2 novembre è stata la prima esercitazione congiunta, con uno scenario che ha interessato non solo i mari italiani ma l’intero Mediterraneo. La simulazione, che ha consentito di testare per la prima volta il Sistema italiano di Allertamento Maremoti (SiAM), si è basata su una ipotetica scossa di terremoto di magnitudo 8.5, con epicentro a sud dell’isola di Zante, nel segmento occidentale dell’Arco Ellenico. L’esercitazione prevedeva il coordinamento dei diversi attori del Sistema italiano di Allerta Maremoti, istituito ufficialmente nello scorso mese di giugno. L’analisi del potenziale tsunamigenico del terremoto simulato è stata effettuata dal Centro Allerta Tsunami dell’INGV, che ha anche effettuato in tempo reale il monitoraggio dei dati mareografici rilevati dall’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), mentre il Dipartimento della Protezione Civile si è occupato delle procedure di valutazione e allertamento delle Sale Operative Regionali e di alcuni Comuni.

Simulazione della propagazione della prima onda di tsunami durante l'esercitazione NEAMWave17

Simulazione della propagazione dello tsunami durante l’esercitazione NEAMWave17. Le isolinee rappresentano i tempi di arrivo della prima onda di tsunami (legenda a destra)

Nel corso dell’esercitazione NEAMWave17, dopo una valutazione dei dati sull’ipotetico evento sismico, il Centro Allerta Tsunami ha emesso un’allerta WATCH (livello massimo) che, immediatamente rilanciata dal Dipartimento della Protezione Civile, ha inviato una serie di messaggi ai funzionari delle Sale Operative Regionali e ai sindaci di dodici amministrazioni comunali delle Regioni maggiormente interessate dallo scenario: Nova Siri, Policoro e Scansano Ionico in Basilicata; Soverato, Catanzaro e Rossano in Calabria; Lecce, Gallipoli e Castellaneta in Puglia, per segnalare la possibilità di un evento imminente, in grado di interessare le aree costiere.

In una situazione reale, il primo messaggio di allerta verrebbe emanato dal CAT in base ai soli parametri del terremoto quali la magnitudo, la distanza della sorgente sismica dalla costa e la profondità dell’ipocentro. Se, nei minuti successivi, l’analisi dei dati delle reti mareografiche del Mediterraneo evidenziasse delle anomalie del livello del mare, verrebbero diramati successivi messaggi di allerta. Nel caso in cui i dati non dovessero confermare l’arrivo dell’onda, l’allerta verrebbe cancellata.

Gli tsunami possono essere causati da terremoti, frane o eruzioni vulcaniche e sono generalmente formati da una serie di lunghe onde che si propagano in mare aperto a velocità di centinaia di chilometri orari e che possono inondare vaste aree dell’entroterra costiero (vedi video Tsunami).

Nel caso degli tsunami generati dai terremoti, che sono di gran lunga i più frequenti e gli unici attualmente monitorati dal CAT-INGV, l’altezza e l’energia delle onde sono proporzionali all’estensione e allo spostamento verticale della faglia sottomarina interessata. É certamente utile sapere che questo fenomeno in alcuni casi è preceduto da un ritiro del mare per decine di metri, che la propagazione di queste onde può durare per ore e che la prima onda ad abbattersi sulle coste non sempre è la più distruttiva.

Nello scenario di NEAMWave17, il terremoto avrebbe provocato uno tsunami in grado di colpire numerose località lungo le coste del Mediterraneo e in modo particolare le coste della Grecia Ionica, della Libia e quelle di Puglia, Basilicata, Calabria e Sicilia Sud-Orientale. In conseguenza dell’elevata velocità di propagazione dell’onda nelle profonde acque dello Ionio, il tempo di arrivo delle prime onde sulle coste italiane più vicine sarebbe stato di circa 20 minuti dal terremoto. L’area selezionata per la simulazione, il segmento occidentale dell’arco ellenico, è ben nota ai sismologi, coincide con un’importante zona di subduzione, e si caratterizza per l’elevata sismicità. In passato, terremoti avvenuti lungo la stessa struttura geologica hanno già dato luogo a imponenti tsunami, come quello verificatosi all’alba del 21 Luglio del 365 d.C. in una zona a sud-ovest di Creta.

In quel caso il terremoto, di magnitudo stimata superiore a 8, ha generato uno tsunami in grado di spazzare tutte le coste del Mediterraneo dall’Algeria alla Siria, distruggendo Alessandria d’Egitto, invadendo l’intero delta del Nilo e provocando gravi danni a Creta, Cipro, nella Grecia continentale, in Libia, nella Sicilia Orientale e persino nel Mar Adriatico (Stiros, 2001). Fenomeni di questo tipo si verificano con una certa frequenza anche nell’area del Mediterraneo, non sempre con proporzioni catastrofiche come quello del 365 d.C. ma non per questo innocui. Ad oggi il Catalogo degli Tsunami Euro-Mediterranei (EMTC), basato su fonti storiche, conta 290 eventi, tra cui il terribile tsunami che ha fatto seguito al terremoto di Reggio Calabria e Messina del 1908, causando migliaia di morti (Maramai, Brizuela e Graziani, 2014).

Ma non si tratta soltanto di eventi eccezionali accaduti in tempi lontani. Nei soli ultimi due anni il CAT-INGV ha monitorato cinque forti terremoti nel Mediterraneo, quattro dei quali hanno generato dei piccoli tsunami locali, inviando le prime allerte al Dipartimento della Protezione Civile in tempi compresi tra 9 e 12 minuti dal tempo origine dell’evento sismico.

Tempo origine (UTC) Regione Mag USGS Mag rapida  CAT Livello di allerta Tempo del  messaggio UTC (minuti dal tempo origine)

16/04/15

18:07

Crete (Greece)    6.4 6.4 Watch 18:16       (9’)

17/11/15

07:10

Ionian (Greece) 6.5 6.5 Advisory 07:22      (12’)

25/01/16

04:22

Gibraltar 6.5 6.5 Advisory 04:33      (11’)

12/6/17

12:28

Greece-Turkey 6.4 6.5 Advisory    12:38      (10’)
20/7/17

22:31

Turkey-Greece 6.6 6.8 Watch 22:41      (10’)

L’ultimo evento rilevato risale al 21 luglio 2017, quando un terremoto di magnitudo 6.7 avvenuto nell’arcipelago del Dodecaneso, e più precisamente nel tratto di mare prospiciente Kos (Grecia) e Bodrum (Turchia) ha generato uno tsunami relativamente piccolo, con onde che localmente hanno raggiunto la quota topografica di 1.5 metri rispetto al livello del mare (Yalçiner et al. 2017). In quell’occasione, in dieci minuti il Centro Allerta Tsunami aveva già calcolato i parametri del terremoto e lanciato la prima allerta, come descritto qui.

Uno degli obiettivi di questo tipo di esercitazioni consiste, per l’appunto, nel testare la creazione, l’invio e la ricezione dei messaggi di allerta da parte dei componenti del SiAM e degli Enti locali e, per quanto possibile, di simulare operativamente le azioni conseguenti, verificando anche i tempi necessari per le azioni di mitigazione dell’impatto sulle coste interessate. In quest’ottica, è stato istituito a livello internazionale lo Tsunami Awareness Day (Giornata della consapevolezza degli tsunami), che si tiene il 5 novembre 2017, in ricordo del grande tsunami che colpì il Giappone nel 1854.


Riferimenti bibliografici

Comunicato Stampa INGV del 3 novembre 2017

Maramai A., Brizuela B., Graziani L. (2014). The Euro-Mediterranean Tsunami Catalogue, Annals of Geophysics, 57, 4, S0435.

Stiros, S. C. (2001). The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. Journal of Structural Geology, 23(2), 545-562.

Yalçıner, A., Annunziato, A., Papadopoulos, G., Güney-Doğan, G., Gökhan-Güler, H., Eray- Cakir, T., Özer-Sözdinler, C., Ulutaş, E., Arikawa, T., Süzen, L., Kanoğlu, U., Güler, I., Probst, P., Synolakis, C. (2017). The 20th July 2017 (22:31 UTC) Bodrum-Kos Earthquake and Tsunami: Post Tsunami Field Survey Report, http://users.metu.edu.tr/yalciner/july-21-2017-tsunami-report/Report-Field-Survey-of-July- 20-2017-Bodrum-Kos-Tsunami.pdf.

Una mappa interattiva della sequenza di Amatrice-Visso-Norcia

Ad un anno dall’evento sismico di magnitudo 6.5 del 30 ottobre 2016 la sequenza sismica di Amatrice-Visso-Norcia continua a far registrare numerosi terremoti ogni giorno nell’area. Una quarantina in media, ad esempio, gli eventi giornalieri registrati in questi ultimi giorni, tutti di magnitudo molto bassa con pochi terremoti superiori a magnitudo 2.0.  Dal 24 agosto ad oggi il numero di eventi ha ormai superato la quota di 78.500, la maggior parte di magnitudo inferiore a 2.0. Infatti se consideriamo solo gli eventi al di sopra di questa soglia sono poco più di 12.000.

Numero giornaliero di terremoti localizzati dalla Rete Sismica Nazionale e cumulata del numero degli eventi sismici nell’area della sequenza (aggiornamento 30 ottobre 2017).

La sequenza di Amatrice-Visso-Norcia è stata anche caratterizzata da diverse importanti fasi temporali a partire dal 24 agosto 2016 fino ai primi mesi del 2017. Queste fasi, ben evidenziate anche nei picchi degli istogrammi del numero giornaliero di terremoti (vedi grafico qui sopra), sono state ricostruite attraverso un video che mostra la distribuzione dei terremoti localizzati dalla Rete Sismica Nazionale dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) in 5 intervalli temporali con colori differenti:

  • dal 1 al 23 agosto 2016 (verde chiaro)
  • dal 24 agosto al 25 ottobre 2016 (giallo)
  • dal 26 al 29 ottobre 2016 (arancione)
  • dal 30 ottobre 2016 al 17 gennaio 2017 (rosso)
  • dal 18 gennaio al 31 marzo 2017 (blu)

Gli eventi sismici rappresentati sono solo quelli di magnitudo uguale o maggiore di 2.0. Le stelle bianche indicano gli epicentri dei terremoti più forti della sequenza con magnitudo uguale o maggiore di 5.0.

Questo video è stato presentato durante la giornata “Insieme per convivere con i terremoti“, organizzata dall’INGV in collaborazione con il Comune ad Amatrice, all’interno del percorso  divulgativo realizzato per mostrare le attività dell’Istituto durante l’emergenza e curato dai gruppi operativi e di ricerca dell’INGV.  Nel percorso è stato dato ampio spazio alle mappe e alle applicazioni multimediali per raccontare la sismicità e la pericolosità sismica. In particolare è stata presentata una mappa interattiva della sequenza che permette di visualizzare ed interrogare gli eventi sismici in base alla magnitudo e alle fasi temporali.

L’interfaccia della mappa interattiva della sequenza di Amatrice-Visso-Norcia. Cliccare sulla mappa per accedere all’applicazione.

Nella mappa sono visualizzati tutti gli eventi sismici di magnitudo uguale o maggiore di 2.5 localizzati dalla Rete Sismica Nazionale dell’INGV nell’area dell’Italia centrale interessata dalla sequenza sismica dal 1 agosto 2016 al 31 agosto 2017.  E’ possibile filtrare gli eventi per magnitudo e per periodo temporale attraverso delle selezioni predefinite: ad esempio, i terremoti maggiori\uguali di magnitudo 4.0, oppure gli eventi registrati tra il 26 e il 29 ottobre 2016. Alcuni filtri sono stati impostati in base alle fasi temporali della sequenza già descritte in precedenza.

Un esempio di applicazione di due filtri (uno sulla magnitudo ed uno temporale) sulla mappa. L’info-grafica mostra il numero di eventi come risultato dei filtri applicati.

Possono essere applicati anche più filtri, ad esempio uno sulla magnitudo ed uno temporale: un’info-grafica mostra il numero di terremoti risultanti dall’applicazione dei filtri e mostrati nella mappa. Inoltre è possibile in ogni momento interrogare ciascun terremoto sulla mappa per visualizzare le informazioni rispetto alla data, la magnitudo e la profondità ipocentrale.

Un’altra importante modalità di interazione è la possibilità di attivare il cursore TEMPO, una funzionalità che permette di impostare un’intervallo temporale personalizzato per la visualizzazione in mappa dei terremoti o per far partire una animazione scegliendo tra diverse velocità.

Il cursore TEMPO permette di creare delle animazioni della sequenza con intervalli temporali personalizzati .

La mappa interattiva è disponibile all’interno della galleria “story maps & terremoti” o direttamente al seguente link: http://arcg.is/1nfnHG.

a cura di Maurizio Pignone, INGV-Centro Nazionale Terremoti.

%d blogger hanno fatto clic su Mi Piace per questo: