Archivi categoria: Approfondimenti scientifici sui terremoti

Il GPS per lo studio delle deformazioni della crosta terrestre

Il GPS è ormai entrato a far parte della vita quotidiana di tutti noi, visto il crescente numero di dispositivi di uso comune che hanno al loro interno un ricevitore GPS (navigatori per auto, smartphone, tablet, orologi). Ma vediamo per quali scopi era nato e soprattutto come viene utilizzato in ambito geofisico, il sistema GPS.

Originariamente sviluppato negli USA per scopi militari negli anni Settanta del secolo scorso, il GPS (Global Positioning System) è un sistema di posizionamento globale basato sulla ricezione a terra di segnali radio emessi da una costellazione di satelliti artificiali in orbita attorno alla Terra ad un’altezza di circa 20000 km. Esso è stato il primo ed è tuttora il più utilizzato sistema di navigazione satellitare al mondo; negli anni infatti nuovi sistemi simili al GPS hanno visto la luce: il russo GLONASS, pienamente operativo dal 2011, il cinese BEIDOU e l’europeo GALILEO, ancora non completamente operativi. Tutti questi sistemi costituiscono, nel loro complesso, quello che è oggi noto con l’acronimo GNSS (Global Navigation Satellite System).

Nel prossimo futuro, l’utilizzo congiunto dei segnali provenienti dalle diverse costellazioni satellitari GNSS, che è in parte già una realtà, porterà vantaggi operativi e miglioramenti nella precisione del posizionamento.

Satelliti GNSS: in alto GPS, GLONASS; in basso BEIDOU, GALILEO.

Il principio di funzionamento del GPS si può semplificare in questo modo: il segnale emesso dai satelliti, piuttosto complesso e costituito da varie componenti (codici e fasi), viene ricevuto a terra da antenne collegate a opportuni ricevitori. Nota la posizione dei satelliti e il tempo impiegato dal segnale a compiere il percorso satellite-ricevitore, si riesce a determinare la posizione del punto a terra. Negli anni, il miglioramento delle tecniche di misura e degli algoritmi per l’elaborazione dei dati, ha permesso di arrivare a stimare la posizione tridimensionale di un punto (coordinate planimetriche e quota) con una precisione submillimetrica.

Oggi il GPS è uno strumento chiave in tanti settori della geofisica, consentendoci in primo luogo di misurare il movimento relativo tra punti sulla superficie della Terra, anche molto distanti tra loro e  appartenenti a placche diverse. Secondo la teoria della tettonica a placche, infatti, l’involucro più esterno della Terra (la litosfera, spessa circa 100 km) è suddiviso in placche rigide galleggianti sopra uno strato meno rigido immediatamente sottostante, detto astenosfera. Questa teoria si è sviluppata a partire dalla teoria della deriva dei continenti di Wegener, studioso che nella prima metà del XX secolo dedicò grandi energie per dimostrare come i vari continenti andassero alla deriva e fossero prima di ciò riuniti in un’unica grande massa continentale.  A partire dagli anni Sessanta del secolo scorso, la determinazione del moto delle placche è diventato uno dei problemi principali nell’ambito delle Scienze della Terra.

Planisfero_placche

Le placche tettoniche e i loro movimenti.

Un grosso passo avanti nello studio dei movimenti delle placche è stato fatto non solo grazie al GPS, ma più in generale grazie all’avvento delle varie tecniche di geodesia spaziale (DORIS, SLR-LLR, VLBI), ovvero quelle tecniche che fanno largo uso di satelliti artificiali e di segnali provenienti dallo spazio. Tra queste però, il GPS è sicuramente quella di più largo utilizzo e che ha avuto il più forte impulso negli ultimi 20-25 anni, grazie anche allo sviluppo e alla diffusione delle reti permanenti di osservazione, costituite da un gran numero di stazioni (ricevitori collegati ad antenne) che registrano il segnale GPS H24, 365 giorni l’anno.

In Italia esistono molte reti GPS permanenti, istituite da Università, Istituti di Ricerca, Enti locali, ditte private, per un totale di circa un migliaio di stazioni; una delle più importanti è la Rete Nazionale Integrata GPS (RING) dell’INGV, costituita da oltre 180 stazioni permanenti distribuite su tutto il territorio nazionale (mappa delle stazioni della RING).

Un esempio di stazione permanente GPS della rete RING, situata a Muro Lucano (PZ).

Questo gran numero di stazioni permanenti consente di studiare in dettaglio come si sta deformando la crosta terrestre in Italia, attraverso la stima delle velocità di spostamento delle stazioni stesse.

Mappa delle velocità orizzontali delle stazioni permanenti GPS italiane, rispetto alla placca euroasiatica (da Devoti et al., 2017)

Particolarmente interessanti in ambito geofisico sono le deformazioni che si verificano in corrispondenza di un terremoto (deformazioni “cosismiche”) e anche successivamente ad esso (deformazioni “post-sismiche”); a questo riguardo i dati GPS svolgono un ruolo fondamentale, essendo complementari a quelli forniti dalla sismologia e dalla geologia. A partire dalla misura degli spostamenti dei punti in seguito al terremoto (differenza tra coordinate dopo l’evento e coordinate prima dell’evento), e attraverso opportuni algoritmi di calcolo, si può realizzare un modello di faglia, risalire cioè alla sua posizione, estensione e alla distribuzione del movimento sulla faglia stessa.

A livello mondiale, il primo grande test sul metodo GPS come strumento per lo studio della deformazione legata a un evento sismico si ebbe nel 1989, in occasione del terremoto di Loma Prieta, nella baia di San Francisco, di magnitudo 7.1. In quell’occasione, i ricercatori dell’USGS (United States Geological Survey) misurarono gli spostamenti dovuti al terremoto di alcuni punti, riuscendo così a ricavare informazioni riguardo alla faglia che aveva generato la scossa.

In Italia, i forti terremoti degli ultimi 20 anni, già a partire dalla sequenza di Colfiorito del 1997, ma soprattutto dopo il terremoto dell’Aquila del 2009 (che possiamo considerare il primo forte terremoto italiano avvenuto in piena “era GPS”), hanno ripetutamente mostrato le grandi potenzialità della tecnica nello studio dei terremoti. Successivamente, importanti risultati sono derivati dai dati GPS, sia in occasione del terremoto dell’Emilia del 2012 che della recente sequenza sismica in Italia centrale del 2016.

L’Aquila 2009 è stato anche il primo terremoto in Italia ad essere registrato da ricevitori GPS ad alta frequenza, ovvero strumenti che registrano il segnale con un intervallo di campionamento molto piccolo, ad esempio 1 o 10 dati al secondo, invece del “classico” intervallo di campionamento di 30 secondi. I dati GPS ad alta frequenza hanno permesso ai ricercatori dell’INGV di osservare per la prima volta il movimento dinamico del suolo durante il passaggio delle onde sismiche, in occasione della scossa principale del 6 aprile 2009.

Spostamenti dinamici orizzontali e verticali delle stazioni GPS ad alta frequenza vicine all’epicentro, durante il terremoto dell’Aquila del 6 aprile 2009 (da Avallone et al., 2010).

Numerosi lavori in letteratura testimoniano come i dati GPS, eventualmente integrati con altri dati geodetici (interferometria satellitare InSAR) siano oggi uno strumento fondamentale nello studio dei terremoti. In particolare i dati GPS ad alta frequenza, in occasione di forti eventi sismici, sono in grado di fornire una stima rapida di magnitudo e parametri di faglia, che è alla base di un efficace sistema di allerta tsunami.

Secondo uno studio di Blewitt et al. (2006), se in occasione del disastroso terremoto (magnitudo 9) di Sumatra del 26 dicembre 2004, fosse stata attiva una rete GPS ad alta frequenza, si sarebbe riusciti a dare una stima della sorgente sismica e una conseguente allerta tsunami entro 15 minuti, salvando migliaia di vite umane.

A cura di Grazia Pietrantonio, Osservatorio Nazionale Terremoti, INGV.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Un aggiornamento a tre anni dal terremoto del 24 agosto 2016

A tre anni dal terremoto del 24 agosto 2016, cerchiamo di fare il punto sull’attività sismica in corso nell’area e vediamo come sono proseguite le ricerche in quest’ultimo anno. La grande quantità di dati sismici, geodetici, geologici, raccolti durante la sequenza è stata già oggetto di numerose pubblicazioni e sono tuttora in corso analisi più di dettaglio, con nuovi metodi e collaborazioni con ricercatori di altri istituti e università italiane e internazionali.

Abbiamo pensato di porre delle domande ad alcuni dei ricercatori che in questi anni hanno studiato e stanno studiando la sequenza sismica e le faglie presenti sul territorio, iniziando da Lucia Margheriti, primo ricercatore dell’Osservatorio Nazionale Terremoti dell’INGV, attuale responsabile del gruppo di lavoro del Bollettino Sismico Italiano e co-autrice dell’articolo “Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks“, di Improta et al., pubblicato sulla rivista Scientific Reports di Nature nel maggio 2019.

Lucia, a tre anni dal terremoto del 24 agosto 2016 possiamo dire che la sequenza sismica nel centro Italia è terminata?

“La sequenza sismica che ha interessato l’Appennino centrale con numerose scosse di magnitudo maggiore di 5 tra il 24 agosto del 2016 e il 18 gennaio del 2017 non è ancora conclusa; infatti l’area compresa tra Camerino e L’Aquila è ancora oggi interessata da una sismicità persistente che presenta un rilascio di energia maggiore rispetto a quanto accadeva prima del 24 agosto 2016. Nel grafico sottostante è riportato l’andamento della sismicità da luglio 2016 ad agosto 2019 all’interno del rettangolo di coordinate lat. 42.4 – 43.2, lon. 12.6 – 13.9: in particolare, le linee verticali mostrano il numero di eventi giornalieri di magnitudo≥2.0 avvenuti durante la sequenza; i giorni e le ore con il maggior numero di terremoti sono quelli che seguono le scosse più forti: più di 800 eventi dopo il 24 agosto 2016 (di cui due forti di magnitudo Mw 6.0 e Mw 5.4 nella zona di Amatrice); quasi 1000 eventi giornalieri dopo il 30 ottobre 2016 (aftershocks degli eventi di magnitudo Mw 5.4 e Mw 5.9 del 26 ottobre nell’area di Visso (MC) e dell’evento più forte della sequenza del 30 ottobre di magnitudo Mw 6.5, con epicentro a Norcia), circa 500 eventi il 18 gennaio 2017 (di cui quattro con magnitudo maggiore o uguale a 5.0 verificatisi nell’area meridionale della sequenza nei pressi di Barete). Nello stesso grafico i cerchietti neri indicano il rilascio di momento sismico giornaliero, una grandezza che stima la somma dell’energia rilasciata dai terremoti ogni giorno, l’asse delle ordinate a destra è in scala logaritmica: il momento sismico rilasciato dagli eventi del 30 ottobre 2016 raggiunge quasi 10^19 Nm, un valore un milione di volte più elevato del fondo scala del grafico; come si può vedere il livello dell’energia rilasciata a luglio-agosto 2019 è ancora mediamente più alto di quello di luglio 2016“.

Figura 1 – Grafico dell’andamento della sismicità dal luglio 2016 ad agosto 2019, l’asse delle ordinate a sinistra indica il numero giornaliero di terremoti rappresentati dalle linee verticali nel grafico; l’asse delle ordinate a destra mostra i valori del rilascio di momento sismico giornaliero rappresentato dai cerchietti neri nel grafico; vedi testo per i dettagli.

“In totale, l’INGV ha localizzato nell’area della sequenza sismica più di 110000 eventi sismici, Leggi il resto di questa voce

Ricordando il terremoto del 6 aprile 2009: 4) Il rilievo del danno con qualche considerazione sul futuro

Il terremoto nell’aquilano del 6 aprile 2009 ha avuto una intensità epicentrale compresa tra il IX e il X grado della scala MCS: questo vuol dire che le località più danneggiate, in questo caso Onna e Castelnuovo, hanno subito danni gravissimi e crolli a più della metà degli edifici. Il terremoto è anche conosciuto semplicemente come terremoto dell’Aquila, in quanto dopo un secolo, è stata colpita in Italia una città importante, con decine di migliaia di abitanti e un impianto urbanistico vasto e complesso, e dove purtroppo si sono concentrati due terzi delle vittime.

L’assegnazione dell’intensità macrosismica necessita della tempestiva raccolta dei dati sul danneggiamento nei centri colpiti tramite rilievi di dettaglio che permettono di ricostruire l’impatto del terremoto sull’edificato. Subito dopo l’evento l’INGV aveva attivato il Gruppo Operativo per il rilievo macrosismico QUEST – costituito, in questa occasione, da squadre di esperti rilevatori delle sezioni INGV di Bologna, Roma, Napoli e Catania, in coordinamento con squadre del Dipartimento della Protezione Civile (supportate da tecnici ENEA) e da colleghi dell’Università della Basilicata e del CNR (IMAA) – avviando nell’immediato il rilievo degli effetti macrosismici.

La valutazione finale dell’intensità in ogni località (Figura 1) è quindi frutto del lavoro collegiale di un team di esperti di rilevamento macrosismico ed è stata condotta a partire dall’analisi e discussione delle osservazioni riportate dalle singole squadre. La valutazione del grado macrosismico è stata condotta sulla base della scala Mercalli-Cancani-Sieberg (MCS).

Figura 1. Mappa delle intensità del terremoto del 6 aprile 2009 (Rovida et al., 2015).

Il terremoto dell’Aquila ha tuttavia prodotto nuovi stimoli e riflessioni per quanto riguarda le tecniche di rilievo macrosismico; proprio in quell’occasione è stata usata per la prima volta in modo sistematico, per lo studio dei danni nella città dell’Aquila, anche la scala EMS-98 (Grünthal, 1998; Tertulliani et al., 2011).

Figura 2. Questa mappa mostra, con una scala di colori, come è stata valutata la vulnerabilità (intesa come suscettibilità al danno sismico), per tutti gli edifici del centro storico dell’Aquila, all’epoca dello studio citato. Con il rosso sono rappresentati gli edifici considerati particolarmente vulnerabili, con il verde chiaro quelli più resistenti. In questa figura è evidente che gli edifici più recenti (classi C e D in giallo e verde chiaro) circondano la parte più antica del centro storico, caratterizzata da edifici classe a vulnerabilità più alta (classi A e B, in rosso e arancio).

L’uso della scala EMS-98 permette di classificare le diverse tipologie costruttive presenti nelle nostre città e paesi e, diversamente da quanto si poteva fare con le precedenti scale macrosismiche, la EMS-98 consente di valutare l’impatto del terremoto su edifici a diversa resistenza, dai più vulnerabili (classe A) a quelli antisismici (classe D), a cui viene assegnato un grado di danno (da 0: non danneggiato, a 5: collasso) (esempio in Figura 2 per la città di L’Aquila). L’insieme di queste valutazioni riconduce lo scenario complessivo degli effetti in una località a indicare un grado di intensità. Le modalità di applicazione del rilievo in EMS-98, implementate durante il terremoto del 2009 sono state poi adottate per tutti i terremoti che si sono succeduti nel decennio appena trascorso. Il rilievo svolto, edificio per edificio, nel centro storico dell’Aquila ha permesso di raccogliere dati di tale dettaglio che sono divenuti la base per studi multidisciplinari con tecniche sismologiche, ingegneristiche e satellitari per mettere in evidenza la distribuzione territoriale e le caratteristiche dei danni subiti dagli edifici. Queste elaborazioni, ad esempio, hanno permesso di valutare il ruolo degli “effetti di sito” e ricostruire quanto il danneggiamento fosse stato influenzato anche da fattori di geologia superficiale, indipendentemente dalla vulnerabilità dell’edificato (Tertulliani et al., 2012; Di Giulio et al., 2014; Bordoni et al., 2014). Si è visto ad esempio che nella zona meridionale del centro storico dell’Aquila il forte danneggiamento, in particolare per quanto riguarda il cemento armato, coincideva con aree a evidente amplificazione locale (vedi Figure 3 e 4), e la presenza della formazione cosiddetta dei Limi Rossi del Colle dell’Aquila.

Figura 3. In questa figura abbiamo evidenziato solo gli edifici che subirono crolli parziali o totali. La scala di colore è la stessa della figura 2. Come si nota gli edifici in cemento armato (in giallo) crollati o parzialmente crollati (gradi di danno 4 e 5), erano edificati nella zona periferica del centro storico a sud ovest, a grande predominanza di Limi Rossi. In alto a destra in verde si nota il Forte Spagnolo.

 

Figura 4. Nei grafici è mostrata la frequenza percentuale di edifici danneggiati da danno 0 a danno 5 (muratura / classe B a sinistra, cemento armato / classe C a destra) in confronto al terreno di edificazione. Si nota chiaramente come oltre il 65% degli edifici in cemento armato crollati (D5, colonna bianca all’estrema destra) fossero edificati sui Limi Rossi (red silts).

È inoltre interessante il contributo che i dati macrosismici, in questo caso utilizzati come verità a terra (ground truth), offrono per il confronto con sistemi automatici di damage detection con l’uso di immagini satellitari.

I dati sugli edifici raccolti nel centro dell’Aquila rappresentano il riferimento per la calibrazione di algoritmi di riconoscimento e classificazione del danno in termini di scala macrosismica (o altro tipo di classificazione) che in via automatica possono fornire una stima preliminare del danneggiamento in tempi molto rapidi (esempi in Figura 5), per indirizzare ulteriori interventi di protezione civile (Dell’Acqua et al., 2011; Anniballe et al., 2018).

Macintosh HD:Users:andreatertulliani:Desktop:Screenshot_2019-05-03 Earthquake damage mapping_ An overall assessment of ground surveys and VHR image change detection aft[...].png

Figura 5. Esempio di confronto tra classificazione automatica del danno e verità a terra (INGV-QUEST) (Dell’Acqua et al., 2011). Al poligono in rosso viene assegnato un grado di danneggiamento in base all’algoritmo di riconoscimento.

Ma al di là degli sviluppi scientifici, che ogni terremoto inevitabilmente stimola, l’analisi macrosismica si innesta naturalmente sul terreno dell’impatto umano e economico prodotto da un evento come quello di dieci anni fa.

All’indomani del terremoto di L’Aquila la comunità scientifica internazionale mise immediatamente in evidenza la sproporzione tra la magnitudo del terremoto del 6 aprile, Mw 6.1-6.3 (per la stima della magnitudo si veda qui), e l’entità dei danni e il numero delle vittime, un costo troppo elevato per un paese occidentale e moderno (Tertulliani, 2009).

A dieci anni dal terremoto, c’è da chiedersi se la stessa domanda sia sempre attuale e se la lezione del terremoto aquilano sia servita.

Nei dieci anni seguiti al 6 aprile 2009 il territorio italiano ha avuto ben poco riposo dal punto di vista sismico, e la comunità scientifica e quella ingegneristica hanno avuto diversi altri momenti (Emilia 2012, Italia centrale 2016-2017, Ischia 2017, Molise e Etna 2018) per riproporre lo stesso quesito e fornire risposte contrastanti.

Il terremoto aquilano aveva fatto riemergere, dal punto di vista del danno osservato, alcune croniche debolezze del patrimonio costruito italiano: l’edilizia tradizionale, spesso priva di manutenzione, pagava il prezzo più alto, mentre le nuove costruzioni avevano statisticamente mostrato una “ovvia” miglior resistenza. Se possiamo infatti descrivere il crollo di un edificio recente in cemento armato come un incidente, dovuto a cause ben precise, spesso singolari (si veda ad esempio l’intervista a Rui Pinho), il crollo degli edifici in muratura tradizionale per eventi di magnitudo considerata moderata, è purtroppo la quasi normalità in Italia, al confronto di altri Paesi dove si è investito maggiormente in prevenzione. Una grande maggioranza di questo tipo di edifici infatti è vetusta, con murature scadenti e scarsa manutenzione, specialmente nei piccoli centri appenninici; necessiterebbe quindi di interventi di consolidamento.

Il fatto che nel 2009 vi siano stati più morti in edifici di cemento armato che in case di muratura (135 vittime in 16 palazzi contro meno della metà in centinaia di case in muratura relativamente a L’Aquila) è sicuramente dovuto alla maggior concentrazione di abitanti in tali grandi strutture, ma anche perché quella seppur piccola percentuale di edifici in cemento armato che sono crollati, aveva molto probabilmente problemi strutturali.

Nonostante ciò, se analizziamo i numeri relativi al centro storico dell’Aquila notiamo come, su circa 500 edifici in cemento armato, meno del 6% ha sofferto danni che vanno dal grave danno strutturale al collasso. Su circa 1300 edifici in muratura (pietra locale, più o meno lavorata, in qualche caso mattoni) questa percentuale sale invece a oltre il 20%, e sale ancora di più nei centri minori, dove l’edilizia tradizionale era più povera e la qualità delle murature peggiore. Queste statistiche non tengono conto delle chiese.

Il terremoto di Amatrice dell’agosto del 2016 ha purtroppo confermato proprio questa criticità (D’Ayala and Paganoni, 2011; Sorrentino et al. 2018).

Ci vorrà qualche decennio per capire se la lezione impartita dal terremoto aquilano in termini di sicurezza sismica avrà risultati positivi. Il caso recente dell’Umbria, dove il terremoto del 30 ottobre 2016 (Mw 6.5) non ha fatto vittime, e prodotto danni tutto sommato contenuti dovuti anche alla buona pratica della ricostruzione post 1997, fa ben sperare.

A cura di Andrea Tertulliani, INGV – Roma1.


Bibliografia e sitografia

Anniballe R., Noto F., Scalia T., Bignami C., Stramondo S., Chini M., Pierdicca N., (2018). Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake, Rem. Sens. Environ. 210,166-178, doi: 10.1016/j.rse.2018.03.004.

D’Ayala D.F. and Paganoni S. (2011). Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009, Bull. Earthq. Eng. 9, 81, doi: 10.1007/s10518-010-9224-4.

Dell’Acqua F., Bignami, C., Chini, M., Lisini, G., Polli D.A., Stramondo, S. (2011). Earthquake damagesr mapping by satellite remote sensing data: L’Aquila April 6th, 2009 event, Ieee J. Selected Topics in Applied Earth Observations and Remote Sensing., 4, 935-943, doi: 10.1109/JSTARS.2011.2162721

https://terremotiegrandirischi.com/2017/09/27/che-cosa-vuol-dire-antisismico-what-does-anti-seismic-mean-intervista-a-rui-pinho/

Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-CPTI15

Sorrentino L., Cattari S., da Porto F., Magenes G., Penna A. (2018). Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull. Earthq. Eng. doi: 10.1007/s10518-018-0370-4.

Tertulliani A., Leschiutta I., Bordoni P., Milana G (2012). Damage Distribution in L’Aquila City (Central Italy) During the 6 April 2009 Earthquake, Bull. Seismol. Soc. Am. 102:1543-1553, doi: 10.1785/0120110205.

Tertulliani A., Arcoraci L., Berardi M., Bernardini F., Camassi R., Castellano C., Del Mese S., Ercolani E., Graziani L., Leschiutta I., Rossi A., Vecchi M. (2011). An application of EMS98 in a medium-sized city: the case of L’Aquila (Central Italy) after the april 6, 2009 Mw 6.3 earthquake, Bull. Earthq. Eng. 9, 67-80, doi: 10.1007/s10518-010-9188-4.

Tertulliani A. (2011). I segni sul tessuto urbano, in Darwin, n. 42, anno 7 Editoriale Darwin.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Ricordando il terremoto del 6 aprile 2009: 3) Geologia e paleosismologia delle faglie abruzzesi

Il terremoto del 6 aprile 2009 è stato generato dall’attivazione di una faglia normale (estensionale), denominata faglia di Paganica in quanto l’evidenza in superficie di questa struttura tettonica attraversa l’abitato di Paganica. La faglia di Paganica era, in parte, nota prima del terremoto del 2009 nella letteratura scientifica (es. Bagnaia et al., 1992; Boncio et al., 2004) ed è riportata nella Carta Geologica della Regione Abruzzo di Vezzani e Ghisetti (1998) e nella Cartografia Geologica Ufficiale, Foglio CARG 359 “L’Aquila” (Figura 1a).

Gli studi geologici di terreno condotti nell’area epicentrale dopo l’evento del 6 aprile 2009 hanno riconosciuto l’occorrenza di fagliazione di superficie lungo la faglia di Paganica (es. Falcucci et al., 2009; Boncio et al., 2010; EMERGEO Working Group, 2010; Vittori et al. 2011). Ovvero, la rottura cosismica si era propagata dalla profondità dell’ipocentro (circa 9 km di profondità) fino alla superficie, dislocandola fino a un massimo di 10-15 cm sulla verticale (Figura 1b).

Studi geologici di dettaglio hanno inoltre chiarito la storia dei movimenti della faglia di Paganica nelle ultime centinaia di migliaia di anni, definendone il ruolo nella dislocazione di depositi alluvionali e lacustri quaternari di decine o centinaia di metri (es. Galli et al., 2010; Giaccio et al., 2012; Improta et al., 2012; Nocentini et al., 2018), con rigetti man mano crescenti all’aumentare dell’età dei depositi  (Figura 1c).

Fig. 1. a) Stralcio del Foglio CARG 359 “L’Aquila”; le frecce rosse indicano la traccia della faglia di Paganica, che pone a contatto sedimenti quaternari del Pleistocene Inferiore con altri del Pleistocene Superiore. b) fagliazione di superficie lungo la faglia di Paganica, indicata dalle frecce rosse. c) Schema geologico-strutturale della zona di faglia (Galli et al., 2010), distinta in tre rami principali (linee rosse).

A seguito dell’evento sismico del 2009, per meglio comprendere l’attività della faglia di Paganica nelle ultime migliaia di anni e riconoscere eventi di attivazione della faglia stessa precedenti a quello del 2009, sono state effettuate indagini “paleosismologiche” attraverso alcuni dei rami (splay) della faglia, allo scopo di definire ogni quanto tempo si attiva e l’entità della dislocazione in superficie determinata da ogni evento di attivazione. A titolo di esempio, analoghi studi sulla faglia del Monte Vettore-Monte Bove condotti prima dei terremoti del 2016 avevano permesso di ipotizzare che la faglia fosse in grado di generare eventi sismici di magnitudo intorno a 6.5 e che l’ultimo evento di dislocazione era precedente all’ultimo millennio (Galadini e Galli, 2003). Ipotesi poi verificata, appunto, dalla sequenza sismica del 2016 e in particolare dalla scossa del 30 ottobre di magnitudo 6.5. Va precisato che i tempi di ritorno dei terremoti stimati dalle indagini paleosismologiche sono tipicamente caratterizzati da incertezze dell’ordine di qualche secolo e non consentono quindi di effettuare delle “previsioni”, in merito ai futuri terremoti, che siano utilizzabili ai fini di protezione civile, ma sono tuttavia elementi preziosi per la valutazione della pericolosità sismica di una regione.

Gli studi paleosismologici condotti lungo la faglia di Paganica hanno definito che questa struttura tettonica si è attivata diverse volte nel tardo Olocene (Figura 2a e 2b). In particolare, la faglia si è probabilmente attivata nel passato insieme ad altre faglie adiacenti, generando terremoti più forti di quello del 6 aprile 2009 (es. Galli et al., 2010; Cinti et al., 2011; Moro et al., 2013). Nello specifico, aggregando diverse osservazioni geologiche alcuni autori hanno suggerito che la faglia di Paganica faccia parte di un sistema di faglie più grande che comprende le faglie del Monte Pettino e del Monte Marine (Galli et al., 2011; Moro et al., 2013) Falcucci et al., 2015), noto in letteratura come sistema di faglie dell’Alta Valle dell’Aterno (Galli et al., 2011; Moro et al., 2016). Secondo questi autori l’intero sistema di faglie, compresa la faglia di Paganica, si sarebbe attivato durante il terremoto del 2 febbraio del 1703 (M 6.7; Rovida et al., 2016) (Figura 2c). Tale evidenza non è stata identificata da altri autori (Cinti et al., 2011) i quali ipotizzano invece l’attivazione della faglia di Paganica insieme ad altre faglie quaternarie localizzate più a sud durante eventi sismici passati, non escludendo l’attivazione della stessa faglia in occasione di un evento sismico successivo al terremoto del 1461 (forse l’evento del 1762).

Fig. 2. a) parete di scavo geognostico per finalità paleosismologica attraverso la faglia di Paganica (modificata da Moro et al., 2013); le frecce bianche indicano il piano della faglia. b) parete di scavo geognostico per finalità paleosismologica attraverso la faglia di Paganica e la fagliazione superficiale del terremoto del 2009 (modificata da Cinti et al., 2011). c) Schema strutturale della del settore aquilano dell’Appennino abruzzese (modificata da Falcucci et al., 2015); in colore i rami di faglia che appartengono allo stesso sistema. MMF, faglia del Monte Marine; MPF, faglia del Monte Pettino; PF, faglia di Paganica; AF, faglia di Assergi; CIF, faglia di Campo Imperatore; MVA, faglia della Media Valle dell’Aterno; VS, faglia della Valle Subequana. d) parete di scavo geognostico per finalità paleosismologica attraverso la faglia della Valle Subequana; le linee rosse indicano i piani di faglia (modificata da Falcucci et al., 2011).

Il settore aquilano dell’Appennino abruzzese è interessato anche da altri sistemi di faglie estensionali attivi, considerati come l’espressione in superficie di sorgenti sismogenetiche responsabili di terremoti di magnitudo compresa tra 6 e 7. Tra questi, il sistema di faglie Campo Imperatore-Assergi (es. Giraudi e Frezzotti, 1995; Galli et al., 2002), quello di Montereale (es. Civico et al., 2016; Cinti et al. 2018) e quello della Media Valle dell’Aterno-Valle Subequana (es. Bosi e Bertini, 1970; Galadini e Galli, 2000; Falcucci et al., 2011) (Figura 2c). Studi paleosismologici condotti lungo questi sistemi di faglia (Figura 2d) hanno permesso di definire eventi di attivazioni cronologicamente diversi di queste strutture rispetto a quelli della faglia di Paganica, suggerendo che tali sistemi abbiano storie di attivazioni indipendenti fra loro. Inoltre, per ciò che riguarda il sistema di faglie di Campo Imperatore-Assergi, dati preliminari sembrano suggerire un evento di attivazione in epoca medievale dell’intera struttura tettonica (Gori et al., 2015; Moro et al., in preparazione), con un evento di magnitudo stimata tra 6.5 e 7; il sistema di faglie di Montereale si potrebbe essere attivato in occasione del terremoto del 16 gennaio della sequenza del 1703; il sistema di faglie della Media Valle dell’Aterno-Valle Subequana si sarebbe attivato l’ultima volta fra il I e il II secolo a.C. (es. Falcucci et al., 2015), anch’esso con un evento sismico di magnitudo intorno a 6.5-7.

Fig. 3. Parete di scavo geognostico per finalità paleosismologica realizzato e studiato nel 2018-2019 attraverso la faglia del Monte Morrone nei pressi dell’abitato di Roccacasale. Le frecce nere indicano i principali piani di taglio osservati nei depositi di versante interessati dal movimento della faglia.

Infine, poco a sudest della faglia della Media Valle dell’Aterno-Valle Subequana è presente un’altra faglia attiva maggiore dell’Appennino abruzzese, quella che borda il fianco occidentale del Monte Morrone, rilievo che delimita ad oriente la piana di Sulmona. La faglia del Monte Morrone è stata investigata da diversi autori in passato e definita come attiva e sismogenetica (es. Vittori et al., 1995; Gori et al., 2011). Indagini archeosismologiche hanno suggerito che l’ultimo evento di attivazione di questa faglia sia avvenuto nel II secolo d.C. (Ceccaroni et al., 2009). Tale ipotesi sembrerebbe essere avvalorata da indagini paleosismologiche condotte dopo l’evento del 2009 (Galli et al., 2014). Ulteriori indagini di questo tipo (realizzate da INGV, Università di Chieti-Pescara e Università degli Studi di Cassino) sono attualmente in corso, allo scopo di verificare o meno i risultati delle indagini precedenti (Fig. 3).

Gli studi paleosismologici consentono di estendere all’indietro di alcune migliaia di anni le nostre conoscenze sulla storia sismica delle principali faglie dell’Appennino centrale, fornendo inoltre importanti indicazioni sull’evoluzione recente della catena montuosa e sulla pericolosità sismica in Italia.

a cura di Stefano Gori, Emanuela Falcucci, Fabrizio Galadini (INGV-Rm1).


Bibliografia

Bagnaia, R., A. D’Epifanio, and S. Sylos Labini (1992). Aquila and Subequan basins: An example of Quaternary evolution in central Apennines, Italy. Quaternaria Nova 2, 187–209.

Boncio, P., Lavecchia, G., Pace, B. (2004). Defining a model of 3D seismogenic sources for seismic hazard assessment applications: The case of central Apennines (Italy). Journal of Seismology, 8(3), 407–425. https://doi.org/10.1023/B:JOSE.0000038449.78801.05

Boncio, P., Pizzi, A., Brozzetti, F., Pomposo, G., Lavecchia, G., Di Naccio, D., Ferrarini, F. (2010). Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, Mw 6.3). Geophysical Research. Letters, 37.

Bosi, C., Bertini, T. (1970). Geologia della media valle dell’Aterno. Mem. Soc. Geol. Ital. 9, 719–777.

Ceccaroni, E., Ameri, G., Gomez Capera, A.A., Galadini, F. (2009). The 2nd century AD earthquake in central Italy: archeoseismological data and seismological implications. Nat Hazards, 50, 335–359. doi: 10.1007/s11069-009-9343-x

Cinti, F. R., Civico, R., Blumetti, A. M., Chiarini, E., La Posta, E., Pantosti, D., et al. (2018). Evidence for surface faulting earthquakes on the Montereale fault system (Abruzzi Apennines, central Italy). Tectonics, 37, 2758–2776. https://doi.org/10.1029/2017TC004780

Cinti, F.R., Pantosti, D., DeMartini, P.M., Pucci, S., Civico, R., Pierdominici, S., Cucci, L. (2011). Evidence for surface faulting events along the Paganica Fault prior to the April 6, 2009 L’Aquila earthquake (Central Italy). Journal of Geophysical Research 116. http://dx.doi.org/10.1029/2010JB007988

Civico, R., Blumetti, A. M., Chiarini, E., Cinti, F. R., La Posta, E., Papasodaro, F., et al. (2016). Traces of the active Capitignano and San Giovanni Faults (Abruzzi Apennines, Italy). Journal of Maps, 12(sup1), 453–459. https://doi.org/10.1080/17445647.2016.1239229

EMERGEO WORKING GROUP (2010). Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 (central Italy). Terra Nova, 22, 43-51.

Falcucci, E., Gori, S., Moro, M., Fubelli, G., Saroli, M., Chiarabba, C., Galadini, F. (2015). Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy. Tectonophysics 651–652 (2015), 186–198.

Falcucci, E., Gori, S., Moro, M., Pisani, A.R., Melini, D., Galadini, F., Fredi, P. (2011). The 2009 L’Aquila earthquake (Italy): what next in the region? Hints fromstress diffusion analysis and normal fault activity. Earth Planet. Sci. Lett. 305, 350–358.

Falcucci, E., Gori, S., Peronace, E., Fubelli, G., Moro, M., Saroli, M., Giaccio, B., Messina, P., Naso, G., Scardia, G., Sposato, A., Voltaggio, M., Galli, P., Galadini, F. (2009). The Paganica fault and surface coseismic ruptures caused by the 6 April, 2009, earthquake (L’Aquila, central Italy). Seismological Research Letters, 80, 940–950.

Galadini, F., Galli, P. (2000). Active tectonics in the central Apennines (Italy)—input data for seismic hazard assessment. Nat. Hazards, 22, 225–270.

Galadini, F., Galli, P. (2003). Paleoseismology of silent faults in the Central Apennines (Italy): the Mt. Vettore and Laga Mts. Faults. Annals of Geophysics, 46 (5), 815-836, ISSN 2037-416X.

Foglio CARG (2009). Cartografia geologica ufficiale Foglio CARG 1:50,000 N. 359, L’Aquila.

Galli, P., Giaccio, B., Messina, P. (2010). The 2009 central Italy earthquake seen through 0.5 myr-long tectonic history of the L’Aquila faults system. Quaternary Science Reviews, 29, 3768-3789.

Galli, P., F. Galadini, M. Moro, Giraudi, C. (2002), New paleoseismological data from the Gran Sasso d’Italia area (central Apennines), Geophys. Res. Lett., 29(7), 1134, doi: 10.1029/2001GL013292

Galli, P., Giaccio, B., Messina, P., Peronace, E., Maria Zuppi, G. (2011). Palaeoseismology of the L’Aquila faults (central Italy, 2009,Mw 6.3 earthquake): implications for active fault linkage. Geophysical Journal International 187 (3), 1119–1134.

Galli, P., Giaccio, B., Peronace, E., Messina, P. (2014). Holocene paleoearthquakes and early–Late Pleistocene slip rate on the Sulmona fault (Central Apennines, Italy). Bulletin of the Seismological Society of America, 105, doi: 10.1785/0120140029

Giaccio, B., Galli, P., Messina, P., Peronace, E., Scardia, G., Sottili, G., Sposato, A., Chiarini, E., Jicha, B., Silvestri, S. (2012). Fault and basin depocentre migration over the last 2 Ma in the L’Aquila 2009 earthquake region, central Italian Apennines, Quaternary Sci. Rev., 56, 69‐88, doi: 10.1016/j.quascirev.2012.08.016

Giraudi, C., Frezzotti, M. (1995). Paleoseismicity in the Gran Sasso Massif (Abruzzo, central Italy). Quaternary International, 25, 81-93.

Gori, S., Falcucci, E., Moro, M., Saroli, M., Fubelli, G., Chiarabba, C., Galadini, F. (2015). Recent advances in the comprehension of the central Apennine seismotectonics, by crosschecking Quaternary geology, paleoseismological and seismological data. Miscellanea INGV, 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, 19-24 April 2015, Pescina, Fucino Basin, Italy (2015), ISSN 2039-6651.

Gori, S., Giaccio, B., Galadini, F., Falcucci, E., Messina, P., Sposato, A., Dramis, F. (2011). Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy). Int. J. Earth Sci. 100, 157–171.

Improta, L., Villani, F., Bruno, P.P., Castiello, A., De Rosa, D., Varriale, F., Punzo, M., Brunori, C.A., Civico, R., Pierdominici, S., Berlusconi, A. (2012). High‐resolution controlled‐source seismic tomography across the Middle Aterno basin in the epicentral area of the 2009, Mw 6.3, L’Aquila earthquake (central Apennines, Italy), Italian Journal of Geosciences, 131(3), 373‐388, doi: 10.3301/IJG.2011.35

Moro, M., Falcucci, E., Gori, S., Saroli, M., Galadini, F. (2016). New paleoseismologic data in the sector between the 2016 Amatrice and 2009 L’Aquila seismic sequences (central Apennines): the Mt. Marine Fault. Annals of Geophysics, 59, fast track n. 5, DOI: 10.4401/ag-7260.

Moro, M., Gori, S., Falcucci, E., Saroli, M., Galadini, F., Salvi, S. (2013). Historical earthquakes and variable kinematic behaviour of the 2009 L’Aquila seismic event (central Italy) causative fault, revealed by paleoseismological investigations. Tectonophysics, 583, 131-144.

Nocentini M., Cosentino D., Spadi M., Tallini M. (2018). Plio-Quaternary geology of the Paganica-San Demetrio-Castelnuovo Basin (Central Italy). Journal of Maps, 14(2), 411-420. https://doi.org/10.1080/17445647.2018.1481774

Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini P., (eds.) (2016). CPTI15, Catalogo parametrico dei terremoti italiani, http://emidius.mi.ingv.it/CPTI15-DBMI15/

Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., Waldhauser, F. (2013). Radiography of a normal fault systemby 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. J. Geophys. Res. 118 (1–21), 2013. http://dx.doi.org/10.1002/jgrb.50130

Vezzani, L., Ghisetti, F. (1998). Carta geologica dell’Abruzzo, Scala 1:100.000, S.El.Ca., Firenze.

Vittori, E., G. P. Cavinato, Miccadei E. (1995). Active faulting along the northeastern edge of the Sulmona basin, central Apennines, Italy, in Perspective in Paleoseismology, L. Serva and B. D. Slemmons (Editors), Special Publication, Vol. 6, Association of Engineering Geologists, Sudbury, Washington, 115–126.

Vittori, E., Di Manna, P., Blumetti, A.M., Comerci, V., Guerrieri, L., Esposito, E., Michetti, A.M., Porfido, S., Piccardi, L., Roberts, G.P., Berlusconi, A., Livio, F., Sileo, G., Wilkinson, M., McCaffrey, K.J.W., Phillips, R.J., Cowie, P.A. (2011). Surface Faulting of the 6 April 2009 Mw 6.3 L’Aquila Earthquake in Central Italy. Bulletin of the Seismological Society of America, 101 (4), 1507-1530.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Ricordando il terremoto del 6 aprile 2009: 2) Modelli di faglia

In questo secondo contributo alla conoscenza del terremoto del 2009 vediamo come sia stato possibile ricostruire il processo di rottura associato alla scossa principale del 6 aprile alle ore 3:32, attraverso l’utilizzo di dati geodetici e sismologici.

Deformazioni e modelli di faglia geodetici

La deformazione della crosta terrestre causata dalla sequenza sismica dell’Aquila del 2009 è stata misurata sia da stazioni GPS collocate a terra in un’ampia regione dell’Italia centrale (Anzidei et al., 2009; Cheloni et al., 2010; D’Agostino et al., 2012; Gualandi et al., 2014), sia dai satelliti con le tecniche radar (Atzori et al., 2009; Walters et al., 2009; Trasatti et al., 2011), e sia da tecniche di geodesia terrestre (Cheloni et al., 2014). Tali tecniche hanno permesso di evidenziare gli spostamenti della superficie terrestre e realizzare così un modello di faglia (posizione, estensione, spostamento dei due lembi della faglia) per l’evento principale del 6 aprile del 2009 (Anzidei et al., 2009; Atzori et al., 2009, Cheloni et al., 2010; Walters et al 2009).

Figura 1 – Spostamenti cosismici orizzontali misurati (frecce nere) e simulati (frecce rosse) ai caposaldi GPS presenti nella zona epicentrale. Il rettangolo blu rappresenta il modello di faglia (proiezione sulla superficie) ricavato da tali spostamenti. Il riquadro in basso a destra mostra invece gli spostamenti verticali osservati e modellati (Anzidei et al., 2009.)

In particolare i massimi spostamenti orizzontali e verticali osservati furono dell’ordine dei 10 e 15 cm alla stazione GPS denominata CADO (Figura 1).

Figura 2 – Interferogrammi calcolati con i satelliti (a) COSMO-Sky-Med e Envisat (b and c) per la scossa del 6 aprile. La stella rossa indica l’epicentro del terremoto del 6 aprile (Atzori et al., 2009).

Gli interferogrammi (ottenuti dai sensori radar satellitari in passaggi prima e dopo il terremoto) mostrano un campo di deformazione caratterizzato da frange concentriche (Figura 2) indicanti che il terreno si era allontanato dal satellite (lungo la linea di vista – Light Of Sight – del satellite) su un’area di circa 480 km2 estesa verso sud-est a partire dall’epicentro del terremoto del 6 aprile. I massimi spostamenti osservati lungo la linea di vista dei satelliti furono dell’ordine dei 20-28 cm, misurati tra la città dell’Aquila e Fossa (AQ).

Per la prima volta in Italia, sono stati inoltre osservati dei movimenti lenti della superficie terrestre nell’area circostante l’epicentro, dovuti al movimento post-terremoto che avviene sul piano di faglia successivamente al terremoto (Cheloni et al., 2010; D’Agostino et al., 2012; Cheloni et al., 2014; Gualandi et al., 2014). Definiamo “lento” questo spostamento perché avviene in un arco temporale di molte settimane o alcuni mesi, mentre durante il terremoto lo spostamento di tutta la faglia avviene in pochi secondi, come vedremo più avanti. Questo movimento lento viene definito afterslip (scivolamento post-sismico). Le registrazioni giornaliere GPS disponibili mostrano chiaramente il lento movimento avvenuto nei giorni successivi alla scossa principale (Figura 3).

Figura 3 – Spostamento misurato alle stazioni GPS dell’Aquila (AQUI) e di Paganica (PAGA) durante (freccia rossa) e nelle settimane successive (freccia blu) al terremoto del 6 aprile 2009. Sono mostrate le tre componenti del movimento (North, East, Up) (Cheloni et al., 2010).

In particolare, i dati GPS misurati unitamente agli interferogrammi mostrati sopra, misurati prima e dopo il terremoto principale del 6 aprile, hanno permesso di calcolare lo spostamento del terreno e ricavare quindi un modello di faglia per la sequenza del 2009. I principali modelli di faglia sono stati proposti da Anzidei et al. (2009), Atzori et al. (2009), Walters et al. (2009), Cheloni et al. (2010) e Gualandi et al. (2014). Altri modelli vennero proposti da Balestra et al. (2015) e Castaldo et al. (2018).

Figura 4 – Modello di faglia e distribuzione di movimento (slip) sul piano di faglia stimato da misure di spostamento GPS. Le frecce nere rappresentano gli spostamenti osservati, mentre quelle bianche gli spostamenti previsti dal modello. La scala di colori rappresenta l’entità di movimento stimata sul piano di faglia (Gualandi et al., 2014).

Gli spostamenti cosismici medi sull’intero piano di faglia ottenuti dall’inversione dei dati GPS (Anzidei et al., 2009; Cheloni et al., 2010; Gualandi et al., 2014), sono di circa 50-60 cm, in accordo con l’inversione di dati interferometrici (Atzori et al., 2009, Walters et al., 2009), con massimi movimenti di circa 1 metro (Figura 4).

In generale, i vari modelli di faglia proposti per la scossa del 6 aprile 2009, concordano nel definire come sorgente sismogenetica della sequenza dell’Aquila del 2009 la faglia di Paganica. Tutti i modelli la caratterizzano come una faglia con geometria planare con un angolo di immersione (dip) verso SW di circa 50° fino ad una profondità di circa 10 km, attivatasi per una lunghezza di circa 16 km. La geometria della faglia identificata dai dati sopra descritti è in accordo con quanto mostrato dalla distribuzione in mappa e in profondità delle repliche (o aftershocks), descritti nell’articolo precedente.

Ulteriori dettagli sul processo di fagliazione, in particolare quelli legati all’evoluzione temporale della rottura durante il terremoto del 6 aprile, possono essere ricavati dai dati accelerometrici registrati dalle stazioni poste in area epicentrale, come illustrato nel seguito.

Modellazione congiunta sismologica / geodetica

Il terremoto del 6 aprile 2009 e i principali eventi della sequenza sismica ad esso associati sono stati registrati da diverse stazioni digitali appartenenti alla “Rete Accelerometrica Nazionale” (RAN) gestita dal Dipartimento della Protezione Civile, da diverse stazioni accelerometriche a larga banda della Rete MedNet e dalle stazioni sismiche permanenti digitali della Rete Sismica Nazionale Italiana dell’INGV (tutti i dati sono disponibili su http://itaca.mi.ingv.it/ItacaNet_30/#/home). Subito dopo l’evento principale, l’INGV in collaborazione con il Laboratoire de Géophysique Interne et Tectonophysique (LGIT) di Grenoble ha provveduto all’installazione di una fitta rete temporanea composta di ulteriori 40 stazioni sismiche digitali (Chiaraluce et al., 2011), che ha permesso la registrazione dell’intera sequenza. I dati accelerometrici registrati dalle stazioni dislocate nella regione epicentrale (Figura 5) durante il terremoto dell’Aquila del 2009, costituiscono per la comunità scientifica un set di osservazioni senza precedenti per un evento con meccanismo di faglia normale.

Figure1NEW

Figura 5 – Mappa del terremoto dell’Aquila: – il rettangolo in rosso rappresenta la proiezione in superficie del piano di faglia; – i triangoli bianchi indicano le stazioni accelerometriche strong-motion e i punti in viola i siti GPS selezionati nello studio di Cirella et al., (2012) per la modellazione della sorgente sismica. L’epicentro del terremoto è identificato dalla stella rossa mentre in giallo vengono riportate le posizioni della città de L’Aquila e di Paganica.

L’analisi e la modellazione della radiazione sismica associata al terremoto dell’Aquila, eseguite attraverso l’applicazione di metodologie che tengono conto degli effetti dovuti alla vicinanza della sorgente sismogenetica, ha permesso di ricostruire l’evoluzione spazio-temporale della rottura co-sismica avvenuta sulla faglia di Paganica, responsabile del terremoto. In particolare, l’inversione congiunta di dati geodetici (GPS e DInSAR) e dati sismologici (Cirella et al., 2009; Yano et al., 2009; Cirella et al., 2012; Gallovič et al., 2015; Del Gaudio et al., 2015) ha consentito di ottenere una descrizione dettagliata del processo di sorgente sismica, in termini di distribuzioni dei parametri cinematici (picco della velocità di dislocazione, velocità del fronte di rottura, durata e direzione della dislocazione) sul piano di faglia.

Figure6NEW

Figura 6. a) Modello della sorgente sismica responsabile del terremoto dell’Aquila, descritto in termini di distribuzioni della dislocazione sul piano di faglia (in alto), durata (centro) e picco (in basso) della velocità di dislocazione sul piano di faglia. b) Confronto tra le forme d’onda osservate (blu) e modellate (rosso). I numeri indicano i valori di picco, in cm/s, osservati su ciascuna stazione e per ogni componente del moto.

La Figura 6a mostra il modello di rottura ottenuto per il terremoto dell’Aquila del 6 aprile 2009, da Cirella et al. (2012). I pannelli in alto, al centro e in basso mostrano, rispettivamente, le distribuzioni di dislocazione, la durata ed il picco della velocità di dislocazione sul piano di faglia. Le isolinee in bianco rappresentano i tempi di rottura e i vettori in nero corrispondono alla direzione di dislocazione. La stella rossa identifica la posizione dell’ipocentro. In Figura 6b si ha il confronto tra i sismogrammi osservati (in blu) e modellati (in rosso) alle stazioni riportate in Figura 5.

Il video mostra l’evoluzione temporale della velocità di dislocazione (in m/s) sul piano di faglia proiettata sulla superficie terrestre. I punti in rosso identificano i siti della città dell’Aquila e dei villaggi di Paganica ed Onna. Si nota come l’intero processo di rottura della faglia duri meno di 10 secondi. Questa durata non va confusa con quello dello scuotimento, che è molto maggiore per il propagarsi delle onde sismiche nella crosta, con riflessioni e rifrazioni multiple, come si vede nel video della propagazione delle onde in Italia centrale.

Questo tipo di indagini fornisce uno strumento essenziale per ottenere una descrizione della sorgente sismica che sia il più possibile rappresentativa dei reali processi sismogenetici, nell’ottica di migliorare la conoscenza dei meccanismi che sono alla base della generazione di un terremoto. Conoscenza indispensabile per la prevenzione e la mitigazione del rischio sismico.

A cura di Daniele Cheloni (INGV-ONT) e Antonella Cirella (INGV-Rm1).


Riferimenti bibliografici

Anzidei M., Boschi E., Cannelli V., Devoti R., Esposito A., Galvani A., Melini D., Pietrantonio G., Riguzzi F., Sepe V., Serpelloni E., (2009). Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys. Res. Lett., 36, doi:10.1029/2009GL039145.

Atzori S., Hunstad I., Chini M., Salvi S., Tolomei C., Bignami C., Stramondo S., Trasatti E., Antonioli A., Boschi E., (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys. Res. Lett., 36, doi:10.1029/GL039293.

Balestra J., Delouis B., (2015). Reassessing the Rupture Process of the 2009 L’Aquila Earthquake (Mw 6.3) on the Paganica Fault and Investigating the Possibility of Coseismic Motion on Secondary Faults. Bull. Seismol. Soc. Am., 105, doi:10.1785/0120140239.

Castaldo R., De Nardis R., DeNovellis V., Ferrarini F., Lanari R., Lavecchia G., Pepe S., Solaro G., Tizzani P., (2018). Coseismic Stress and Strain Field Changes Investigation Through 3D-Finite Element Modeling of DinSAR and GPS Measurements and Geologica/Seismological Data: The L’Aquila (Italy) 2009 Earthquake Case Study. J. Geophys. Res., 123, doi:10.1002/2017JB014453.

Cheloni D., D’Agostino N., D’Anastasio E., Avallone A., Mantenuto S., Giuliani R., Mattone M., Calcaterra S., Gambino P., Dominici D., Radicioni F., Fastellini G., (2010). Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements. Geophys. J. Int., 181, doi:10.1111/j.1365-246X.2010.04584.x.

Cheloni D., Giuliani R., D’Anastasio E., Atzori S., Walters R.J., Bonci L., D’Agostino N., Mattone M., Calcaterra S., Gambino P., Deninno F., Maseroli R., Stefanelli G., (2014). Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) Mw 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics, 622, doi:10.1016/j.tecto.2014.03.009.

Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano and P. De Gori, (2011), The Anatomy of the 2009 L’Aquila Normal Fault System [central Italy] Imaged by High Resolution Foreshock and Aftershock Locations, J. Geophys. Res.,, 116, B12311, doi:10.1029/2011JB008352.

Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009), “Rupture history of the 2009 L’Aquila earthquake from non-linear joint inversion of strong motion and GPS data”, Geophys. Res. Lett. 36, L19304, doi:10.1029/2009GL039795

Cirella A., Piatanesi A., Tinti E. Chini M. and M. Cocco (2012), “Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake”, Geophysical Journal International.190, 607-621, doi:10.1111/j.1365-246X.2012.05505.x.

D’Agostino N., Cheloni D., Fornaro G., Giuliani R., Reale D., (2012). Space-time distribution of afterslip following the 2009 L’Aquila earthquake. J. Geophys. Res., 117, doi:10.1029/2011JB008523.

Del Gaudio S., Causse M., and G. Festa, Broad-band strong motion simulations coupling k-square kinematic source models with empirical Green’s functions: the 2009 L’Aquila earthquake, Geophysical Journal International, Volume 203, Issue 1, October, 2015, Pages 720–736, https://doi.org/10.1093/gji/ggv325

Gallovič, F., Imperatori, W., and Mai, P. M. ( 2015), Effects of three‐dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L’Aquila earthquake, J. Geophys. Res. Solid Earth, 120, 428– 449, doi:10.1002/2014JB011650.

Gualandi A., Serpelloni E., Belardinelli M.E., (2014). Space-time evolution of crustal deformation related to the Mw 6.3, 2009 L’Aquila earthquake (central Italy) from principal component analysis inversion of GPS position time-series. Geophys. J. Int., 197, doi:10.1093/gji/ggt522.

Trasatti E., Kyriakopoulos C., Chini M. (2011). Finite element inversion of DInSAR data from the Mw6.3 L’Aquila earthquake, 2009 (Italy). Geophys. Res. Lett., 38, 8, https://doi.org/10.1029/2011GL046714.

Yano T.E. , Shao G., Liu O. , Ji C., and Ralph J. Archuleta, Coseismic and potential early afterslip distribution of the 2009 Mw 6.3 L’Aquila, Italy earthquake, Geophysical Journal International, Volume 199, Issue 1, October, 2014, Pages 23–40, https://doi.org/10.1093/gji/ggu241

Walters R.J., Elliott J.R., D’Agostino N., England P.C., Hunstad I., Jackson J.A., Parsons B., Phillips R.J., Roberts G., (2009). The 2009 L’Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophys. Res. Lett., 36, doi:10.1029/2009GL039337.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

%d blogger hanno fatto clic su Mi Piace per questo: