Ricordando il terremoto del 6 aprile 2009: 2) Modelli di faglia

In questo secondo contributo alla conoscenza del terremoto del 2009 vediamo come sia stato possibile ricostruire il processo di rottura associato alla scossa principale del 6 aprile alle ore 3:32, attraverso l’utilizzo di dati geodetici e sismologici.

Deformazioni e modelli di faglia geodetici

La deformazione della crosta terrestre causata dalla sequenza sismica dell’Aquila del 2009 è stata misurata sia da stazioni GPS collocate a terra in un’ampia regione dell’Italia centrale (Anzidei et al., 2009; Cheloni et al., 2010; D’Agostino et al., 2012; Gualandi et al., 2014), sia dai satelliti con le tecniche radar (Atzori et al., 2009; Walters et al., 2009; Trasatti et al., 2011), e sia da tecniche di geodesia terrestre (Cheloni et al., 2014). Tali tecniche hanno permesso di evidenziare gli spostamenti della superficie terrestre e realizzare così un modello di faglia (posizione, estensione, spostamento dei due lembi della faglia) per l’evento principale del 6 aprile del 2009 (Anzidei et al., 2009; Atzori et al., 2009, Cheloni et al., 2010; Walters et al 2009).

Figura 1 – Spostamenti cosismici orizzontali misurati (frecce nere) e simulati (frecce rosse) ai caposaldi GPS presenti nella zona epicentrale. Il rettangolo blu rappresenta il modello di faglia (proiezione sulla superficie) ricavato da tali spostamenti. Il riquadro in basso a destra mostra invece gli spostamenti verticali osservati e modellati (Anzidei et al., 2009.)

In particolare i massimi spostamenti orizzontali e verticali osservati furono dell’ordine dei 10 e 15 cm alla stazione GPS denominata CADO (Figura 1).

Figura 2 – Interferogrammi calcolati con i satelliti (a) COSMO-Sky-Med e Envisat (b and c) per la scossa del 6 aprile. La stella rossa indica l’epicentro del terremoto del 6 aprile (Atzori et al., 2009).

Gli interferogrammi (ottenuti dai sensori radar satellitari in passaggi prima e dopo il terremoto) mostrano un campo di deformazione caratterizzato da frange concentriche (Figura 2) indicanti che il terreno si era allontanato dal satellite (lungo la linea di vista – Light Of Sight – del satellite) su un’area di circa 480 km2 estesa verso sud-est a partire dall’epicentro del terremoto del 6 aprile. I massimi spostamenti osservati lungo la linea di vista dei satelliti furono dell’ordine dei 20-28 cm, misurati tra la città dell’Aquila e Fossa (AQ).

Per la prima volta in Italia, sono stati inoltre osservati dei movimenti lenti della superficie terrestre nell’area circostante l’epicentro, dovuti al movimento post-terremoto che avviene sul piano di faglia successivamente al terremoto (Cheloni et al., 2010; D’Agostino et al., 2012; Cheloni et al., 2014; Gualandi et al., 2014). Definiamo “lento” questo spostamento perché avviene in un arco temporale di molte settimane o alcuni mesi, mentre durante il terremoto lo spostamento di tutta la faglia avviene in pochi secondi, come vedremo più avanti. Questo movimento lento viene definito afterslip (scivolamento post-sismico). Le registrazioni giornaliere GPS disponibili mostrano chiaramente il lento movimento avvenuto nei giorni successivi alla scossa principale (Figura 3).

Figura 3 – Spostamento misurato alle stazioni GPS dell’Aquila (AQUI) e di Paganica (PAGA) durante (freccia rossa) e nelle settimane successive (freccia blu) al terremoto del 6 aprile 2009. Sono mostrate le tre componenti del movimento (North, East, Up) (Cheloni et al., 2010).

In particolare, i dati GPS misurati unitamente agli interferogrammi mostrati sopra, misurati prima e dopo il terremoto principale del 6 aprile, hanno permesso di calcolare lo spostamento del terreno e ricavare quindi un modello di faglia per la sequenza del 2009. I principali modelli di faglia sono stati proposti da Anzidei et al. (2009), Atzori et al. (2009), Walters et al. (2009), Cheloni et al. (2010) e Gualandi et al. (2014). Altri modelli vennero proposti da Balestra et al. (2015) e Castaldo et al. (2018).

Figura 4 – Modello di faglia e distribuzione di movimento (slip) sul piano di faglia stimato da misure di spostamento GPS. Le frecce nere rappresentano gli spostamenti osservati, mentre quelle bianche gli spostamenti previsti dal modello. La scala di colori rappresenta l’entità di movimento stimata sul piano di faglia (Gualandi et al., 2014).

Gli spostamenti cosismici medi sull’intero piano di faglia ottenuti dall’inversione dei dati GPS (Anzidei et al., 2009; Cheloni et al., 2010; Gualandi et al., 2014), sono di circa 50-60 cm, in accordo con l’inversione di dati interferometrici (Atzori et al., 2009, Walters et al., 2009), con massimi movimenti di circa 1 metro (Figura 4).

In generale, i vari modelli di faglia proposti per la scossa del 6 aprile 2009, concordano nel definire come sorgente sismogenetica della sequenza dell’Aquila del 2009 la faglia di Paganica. Tutti i modelli la caratterizzano come una faglia con geometria planare con un angolo di immersione (dip) verso SW di circa 50° fino ad una profondità di circa 10 km, attivatasi per una lunghezza di circa 16 km. La geometria della faglia identificata dai dati sopra descritti è in accordo con quanto mostrato dalla distribuzione in mappa e in profondità delle repliche (o aftershocks), descritti nell’articolo precedente.

Ulteriori dettagli sul processo di fagliazione, in particolare quelli legati all’evoluzione temporale della rottura durante il terremoto del 6 aprile, possono essere ricavati dai dati accelerometrici registrati dalle stazioni poste in area epicentrale, come illustrato nel seguito.

Modellazione congiunta sismologica / geodetica

Il terremoto del 6 aprile 2009 e i principali eventi della sequenza sismica ad esso associati sono stati registrati da diverse stazioni digitali appartenenti alla “Rete Accelerometrica Nazionale” (RAN) gestita dal Dipartimento della Protezione Civile, da diverse stazioni accelerometriche a larga banda della Rete MedNet e dalle stazioni sismiche permanenti digitali della Rete Sismica Nazionale Italiana dell’INGV (tutti i dati sono disponibili su http://itaca.mi.ingv.it/ItacaNet_30/#/home). Subito dopo l’evento principale, l’INGV in collaborazione con il Laboratoire de Géophysique Interne et Tectonophysique (LGIT) di Grenoble ha provveduto all’installazione di una fitta rete temporanea composta di ulteriori 40 stazioni sismiche digitali (Chiaraluce et al., 2011), che ha permesso la registrazione dell’intera sequenza. I dati accelerometrici registrati dalle stazioni dislocate nella regione epicentrale (Figura 5) durante il terremoto dell’Aquila del 2009, costituiscono per la comunità scientifica un set di osservazioni senza precedenti per un evento con meccanismo di faglia normale.

Figure1NEW

Figura 5 – Mappa del terremoto dell’Aquila: – il rettangolo in rosso rappresenta la proiezione in superficie del piano di faglia; – i triangoli bianchi indicano le stazioni accelerometriche strong-motion e i punti in viola i siti GPS selezionati nello studio di Cirella et al., (2012) per la modellazione della sorgente sismica. L’epicentro del terremoto è identificato dalla stella rossa mentre in giallo vengono riportate le posizioni della città de L’Aquila e di Paganica.

L’analisi e la modellazione della radiazione sismica associata al terremoto dell’Aquila, eseguite attraverso l’applicazione di metodologie che tengono conto degli effetti dovuti alla vicinanza della sorgente sismogenetica, ha permesso di ricostruire l’evoluzione spazio-temporale della rottura co-sismica avvenuta sulla faglia di Paganica, responsabile del terremoto. In particolare, l’inversione congiunta di dati geodetici (GPS e DInSAR) e dati sismologici (Cirella et al., 2009; Yano et al., 2009; Cirella et al., 2012; Gallovič et al., 2015; Del Gaudio et al., 2015) ha consentito di ottenere una descrizione dettagliata del processo di sorgente sismica, in termini di distribuzioni dei parametri cinematici (picco della velocità di dislocazione, velocità del fronte di rottura, durata e direzione della dislocazione) sul piano di faglia.

Figure6NEW

Figura 6. a) Modello della sorgente sismica responsabile del terremoto dell’Aquila, descritto in termini di distribuzioni della dislocazione sul piano di faglia (in alto), durata (centro) e picco (in basso) della velocità di dislocazione sul piano di faglia. b) Confronto tra le forme d’onda osservate (blu) e modellate (rosso). I numeri indicano i valori di picco, in cm/s, osservati su ciascuna stazione e per ogni componente del moto.

La Figura 6a mostra il modello di rottura ottenuto per il terremoto dell’Aquila del 6 aprile 2009, da Cirella et al. (2012). I pannelli in alto, al centro e in basso mostrano, rispettivamente, le distribuzioni di dislocazione, la durata ed il picco della velocità di dislocazione sul piano di faglia. Le isolinee in bianco rappresentano i tempi di rottura e i vettori in nero corrispondono alla direzione di dislocazione. La stella rossa identifica la posizione dell’ipocentro. In Figura 6b si ha il confronto tra i sismogrammi osservati (in blu) e modellati (in rosso) alle stazioni riportate in Figura 5.

Il video mostra l’evoluzione temporale della velocità di dislocazione (in m/s) sul piano di faglia proiettata sulla superficie terrestre. I punti in rosso identificano i siti della città dell’Aquila e dei villaggi di Paganica ed Onna. Si nota come l’intero processo di rottura della faglia duri meno di 10 secondi. Questa durata non va confusa con quello dello scuotimento, che è molto maggiore per il propagarsi delle onde sismiche nella crosta, con riflessioni e rifrazioni multiple, come si vede nel video della propagazione delle onde in Italia centrale.

Questo tipo di indagini fornisce uno strumento essenziale per ottenere una descrizione della sorgente sismica che sia il più possibile rappresentativa dei reali processi sismogenetici, nell’ottica di migliorare la conoscenza dei meccanismi che sono alla base della generazione di un terremoto. Conoscenza indispensabile per la prevenzione e la mitigazione del rischio sismico.

A cura di Daniele Cheloni (INGV-ONT) e Antonella Cirella (INGV-Rm1).


Riferimenti bibliografici

Anzidei M., Boschi E., Cannelli V., Devoti R., Esposito A., Galvani A., Melini D., Pietrantonio G., Riguzzi F., Sepe V., Serpelloni E., (2009). Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys. Res. Lett., 36, doi:10.1029/2009GL039145.

Atzori S., Hunstad I., Chini M., Salvi S., Tolomei C., Bignami C., Stramondo S., Trasatti E., Antonioli A., Boschi E., (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys. Res. Lett., 36, doi:10.1029/GL039293.

Balestra J., Delouis B., (2015). Reassessing the Rupture Process of the 2009 L’Aquila Earthquake (Mw 6.3) on the Paganica Fault and Investigating the Possibility of Coseismic Motion on Secondary Faults. Bull. Seismol. Soc. Am., 105, doi:10.1785/0120140239.

Castaldo R., De Nardis R., DeNovellis V., Ferrarini F., Lanari R., Lavecchia G., Pepe S., Solaro G., Tizzani P., (2018). Coseismic Stress and Strain Field Changes Investigation Through 3D-Finite Element Modeling of DinSAR and GPS Measurements and Geologica/Seismological Data: The L’Aquila (Italy) 2009 Earthquake Case Study. J. Geophys. Res., 123, doi:10.1002/2017JB014453.

Cheloni D., D’Agostino N., D’Anastasio E., Avallone A., Mantenuto S., Giuliani R., Mattone M., Calcaterra S., Gambino P., Dominici D., Radicioni F., Fastellini G., (2010). Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements. Geophys. J. Int., 181, doi:10.1111/j.1365-246X.2010.04584.x.

Cheloni D., Giuliani R., D’Anastasio E., Atzori S., Walters R.J., Bonci L., D’Agostino N., Mattone M., Calcaterra S., Gambino P., Deninno F., Maseroli R., Stefanelli G., (2014). Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) Mw 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics, 622, doi:10.1016/j.tecto.2014.03.009.

Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano and P. De Gori, (2011), The Anatomy of the 2009 L’Aquila Normal Fault System [central Italy] Imaged by High Resolution Foreshock and Aftershock Locations, J. Geophys. Res.,, 116, B12311, doi:10.1029/2011JB008352.

Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009), “Rupture history of the 2009 L’Aquila earthquake from non-linear joint inversion of strong motion and GPS data”, Geophys. Res. Lett. 36, L19304, doi:10.1029/2009GL039795

Cirella A., Piatanesi A., Tinti E. Chini M. and M. Cocco (2012), “Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake”, Geophysical Journal International.190, 607-621, doi:10.1111/j.1365-246X.2012.05505.x.

D’Agostino N., Cheloni D., Fornaro G., Giuliani R., Reale D., (2012). Space-time distribution of afterslip following the 2009 L’Aquila earthquake. J. Geophys. Res., 117, doi:10.1029/2011JB008523.

Del Gaudio S., Causse M., and G. Festa, Broad-band strong motion simulations coupling k-square kinematic source models with empirical Green’s functions: the 2009 L’Aquila earthquake, Geophysical Journal International, Volume 203, Issue 1, October, 2015, Pages 720–736, https://doi.org/10.1093/gji/ggv325

Gallovič, F., Imperatori, W., and Mai, P. M. ( 2015), Effects of three‐dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L’Aquila earthquake, J. Geophys. Res. Solid Earth, 120, 428– 449, doi:10.1002/2014JB011650.

Gualandi A., Serpelloni E., Belardinelli M.E., (2014). Space-time evolution of crustal deformation related to the Mw 6.3, 2009 L’Aquila earthquake (central Italy) from principal component analysis inversion of GPS position time-series. Geophys. J. Int., 197, doi:10.1093/gji/ggt522.

Trasatti E., Kyriakopoulos C., Chini M. (2011). Finite element inversion of DInSAR data from the Mw6.3 L’Aquila earthquake, 2009 (Italy). Geophys. Res. Lett., 38, 8, https://doi.org/10.1029/2011GL046714.

Yano T.E. , Shao G., Liu O. , Ji C., and Ralph J. Archuleta, Coseismic and potential early afterslip distribution of the 2009 Mw 6.3 L’Aquila, Italy earthquake, Geophysical Journal International, Volume 199, Issue 1, October, 2014, Pages 23–40, https://doi.org/10.1093/gji/ggu241

Walters R.J., Elliott J.R., D’Agostino N., England P.C., Hunstad I., Jackson J.A., Parsons B., Phillips R.J., Roberts G., (2009). The 2009 L’Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophys. Res. Lett., 36, doi:10.1029/2009GL039337.


Licenza

Licenza Creative Commons

Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Informazioni su blogingvterremoti

Istituto Nazionale di Geofisica e Vulcanologia

Pubblicato il 11 aprile 2019, in Approfondimenti scientifici sui terremoti, Il terremoto dell'Aquila del 2009, Sismicità Italia con tag , , , , , , , , , , , , , , , . Aggiungi il permalink ai segnalibri. Lascia un commento.

I commenti sono chiusi.

%d blogger hanno fatto clic su Mi Piace per questo: