Terremoti in provincia di Parma, 19 novembre 2017

Oggi, 19 novembre 2017 alle ore 13:37 italiane, è stato localizzato dalla Rete Sismica Nazionale dell’INGV un terremoto di magnitudo Richter ML 4.4 (magnitudo momento Mw 4.4) in provincia di Parma ad una profondità di 32 km. I comuni più vicini all’epicentro sono tutti in provincia di Parma (Fornovo di Taro, Varano de’ Melegari, Terenzo, Calestano, Solignano) e la città di Parma dista 26 km.

Tra ieri e oggi, sono stati 34 complessivamente gli eventi sismici localizzati in quell’area, di cui 14 hanno avuto magnitudo pari o maggiore di 2.0 con un terremoto di magnitudo 3.3 avvenuto alle ore 13.10 italiane di oggi, poco prima dell’evento di magnitudo 4.4.

Questa scossa è avvenuta lungo l’Appennino parmense dove i terremoti sono frequenti e spesso interessano la porzione profonda della crosta, al di sotto dei 20 km, diversamente dai terremoti del 2012 nella Pianura Padana che invece interessarono la copertura sedimentaria più superficiale.

Il meccanismo focale ottenuto con i dati delle forme d’onda della Rete Sismica Nazionale mostra che il terremoto si è generato molto probabilmente su una faglia inversa e il movimento è stato di tipo compressivo, con asse di massima compressione orientato circa nordest-sudovest. La magnitudo momento Mw calcolata è pari a 4.4.

Meccanismo focale del terremoto di oggi in provincia di Parma. Il simbolo rosso e bianco indica il tipo di geometria e movimento della faglia responsabile del terremoto. La stella rossa è l’epicentro del terremoto e i triangoli rossi sono le stazioni sismiche usate nel calcolo.

Negli ultimi 12 anni, in quest’area si è avuta una sismicità diffusa con terremoti al di sotto di magnitudo 5, il più forte dei quali è il terremoto profondo 72 km avvenuto il 27 gennaio 2012.

L’area interessata dal terremoto odierno è caratterizzata storicamente da sismicità moderata, pur in un contesto di relativa incompletezza storica delle informazioni disponibili. Allo stato attuale delle conoscenze, infatti, la storia sismica dell’area appare ragionevolmente completa per classi di magnitudo Mw≥4.5 solo a partire dalla fine del XIX secolo, pur conservando traccia di un paio di terremoti significativi nel 1818 (Mw 5.2) – l’evento più rilevante della storia sismica dell’area – e nel 1834 (Mw 5.1).

Allargando l’area di osservazione a 30 km dall’epicentro, la storia sismica si arricchisce di numerosi eventi localizzati sulla città di Parma, che è ovviamente il punto di ‘registrazione’ delle informazioni storiche, senza però che emergano eventi di particolare consistenza.

Anche la storia sismica osservata di Fornovo di Taro, località più prossima alla localizzazione dell’evento di oggi, pur poco significativa in termini di completezza storica, presenta solo tre episodi di danneggiamento leggero o moderato, rispettivamente per i terremoti della Garfagnana del 7 settembre 1920 [Int. 6-7 MCS], del Parmense del 15 luglio 1971 [Int. 7 MCS] e del Parmense del 9 novembre 1983 [Int. 6 MCS].

Storia sismica osservata a Fornovo di Taro (PR): nella scala MCS il grado 6 classifica l’inizio del danneggiamento leggero, ma diffuso (Database macrosismico italiano DBMI15).

Dal punto di vista della pericolosità sismica, l’area interessata dai terremoti di questi giorni è caratterizzata da una pericolosità medio-alta con valori di accelerazione attesa tra 0.150 e 0.175 g.

L’epicentro del terremoto Ml 4.4 delle ore 13:37 italiane sovrapposto alla mappa di pericolosità sismica del territorio nazionale (http://zonesismiche.ingv.it)

La mappa di scuotimento dell’evento di magnitudo M 4.4, espressa in termini di intensità in scala Mercalli-Cancani-Sieberg (MCS), è ottenuta convertendo i valori di picco del moto del suolo (espresso in termini di accelerazione e in velocità) in intensità attraverso una relazione empirica ricavate dai dati registrati e macrosismici disponibili.

La mappa di scuotimento dell’evento di magnitudo M4.4 avvenuto oggi, 19 novembre 2017, alle ore 13.37 italiane espressa in termini di intensità in scala Mercalli-Cancani-Sieberg (MCS) è ottenuta convertendo i valori di picco del moto del suolo (espresso in termini di accelerazione e in velocità) in intensità attraverso una relazione empirica ricavate dai dati registrati e macrosismici disponibili.

Secondo i questionari di http://www.haisentitoilterremoto.it/, il terremoto è stato risentito diffusamente in Emilia Romagna, Liguria, Lombardia, in una parte del Piemonte, del Veneto e della Toscana.

La mappa del risentimento sismico in scala MCS (Mercalli-Cancani-Sieberg) che mostra la distribuzione degli effetti del terremoto sul territorio. Con la stella in colore viola viene indicato l’epicentro strumentale del terremoto, i cerchi colorati si riferiscono alle intensità associate ad ogni comune. Nella didascalia in alto è indicato il numero dei questionari elaborati per ottenere la mappa stessa. Cliccare sulla mappa per vedere la versione aggiornata http://mappe.haisentitoilterremoto.it/17671101/mcs.jpg

Per maggiori informazioni sul terremoto di magnitudo 4.4 si veda la pagina informativa dell’evento.

Il Centro Allerta Tsunami e l’esercitazione NEAMWave17

Il 2 novembre 2017 si è svolta in Italia l’esercitazione internazionale sul rischio tsunami NEAMWave17, che tra il 31 ottobre e il 3 novembre ha interessato la regione denominata NEAM (Atlantico nord-orientale, Mediterraneo, Mar di Marmara e Mar Nero). L’esercitazione, la terza organizzata dalla International Oceanographic Commission (IOC) dell’Unesco, aveva l’obiettivo di testare le capacità operative del sistema di allertamento maremoti nella regione, di coinvolgere gli Stati membri e soprattutto di migliorare la capacità di affrontare il rischio tsunami.

L’esercitazione prevedeva quattro differenti scenari simulati, che hanno interessato, in giorni diversi, tre aree del Mediterraneo e un’area dell’Atlantico nord-orientale. Sono stati coinvolti quattro Tsunami Service Provider: il CENALT (CENtre d’ALerte aux Tsunamis, Francia), il NOA (National Observatory of Athens, Grecia), il CAT (Centro Allerta Tsunami dell’Istituto Nazionale di Geofisica e Vulcanologia, Italia), il KOERI (Kandilli Observatory and Earthquake Research Institute, Turchia), e l’IPMA (Instituto Português do Mar e da Atmosfera, Portogallo), candidato come Tsunami Service Provider per il Portogallo. Il CAT-INGV è stato di recente accreditato come Tsunami Service Provider per il Mediterraneo.

Per il CAT e il NOA, quella del 2 novembre è stata la prima esercitazione congiunta, con uno scenario che ha interessato non solo i mari italiani ma l’intero Mediterraneo. La simulazione, che ha consentito di testare per la prima volta il Sistema italiano di Allertamento Maremoti (SiAM), si è basata su una ipotetica scossa di terremoto di magnitudo 8.5, con epicentro a sud dell’isola di Zante, nel segmento occidentale dell’Arco Ellenico. L’esercitazione prevedeva il coordinamento dei diversi attori del Sistema italiano di Allerta Maremoti, istituito ufficialmente nello scorso mese di giugno. L’analisi del potenziale tsunamigenico del terremoto simulato è stata effettuata dal Centro Allerta Tsunami dell’INGV, che ha anche effettuato in tempo reale il monitoraggio dei dati mareografici rilevati dall’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), mentre il Dipartimento della Protezione Civile si è occupato delle procedure di valutazione e allertamento delle Sale Operative Regionali e di alcuni Comuni.

Simulazione della propagazione della prima onda di tsunami durante l'esercitazione NEAMWave17

Simulazione della propagazione dello tsunami durante l’esercitazione NEAMWave17. Le isolinee rappresentano i tempi di arrivo della prima onda di tsunami (legenda a destra)

Nel corso dell’esercitazione NEAMWave17, dopo una valutazione dei dati sull’ipotetico evento sismico, il Centro Allerta Tsunami ha emesso un’allerta WATCH (livello massimo) che, immediatamente rilanciata dal Dipartimento della Protezione Civile, ha inviato una serie di messaggi ai funzionari delle Sale Operative Regionali e ai sindaci di dodici amministrazioni comunali delle Regioni maggiormente interessate dallo scenario: Nova Siri, Policoro e Scansano Ionico in Basilicata; Soverato, Catanzaro e Rossano in Calabria; Lecce, Gallipoli e Castellaneta in Puglia, per segnalare la possibilità di un evento imminente, in grado di interessare le aree costiere.

In una situazione reale, il primo messaggio di allerta verrebbe emanato dal CAT in base ai soli parametri del terremoto quali la magnitudo, la distanza della sorgente sismica dalla costa e la profondità dell’ipocentro. Se, nei minuti successivi, l’analisi dei dati delle reti mareografiche del Mediterraneo evidenziasse delle anomalie del livello del mare, verrebbero diramati successivi messaggi di allerta. Nel caso in cui i dati non dovessero confermare l’arrivo dell’onda, l’allerta verrebbe cancellata.

Gli tsunami possono essere causati da terremoti, frane o eruzioni vulcaniche e sono generalmente formati da una serie di lunghe onde che si propagano in mare aperto a velocità di centinaia di chilometri orari e che possono inondare vaste aree dell’entroterra costiero (vedi video Tsunami).

Nel caso degli tsunami generati dai terremoti, che sono di gran lunga i più frequenti e gli unici attualmente monitorati dal CAT-INGV, l’altezza e l’energia delle onde sono proporzionali all’estensione e allo spostamento verticale della faglia sottomarina interessata. É certamente utile sapere che questo fenomeno in alcuni casi è preceduto da un ritiro del mare per decine di metri, che la propagazione di queste onde può durare per ore e che la prima onda ad abbattersi sulle coste non sempre è la più distruttiva.

Nello scenario di NEAMWave17, il terremoto avrebbe provocato uno tsunami in grado di colpire numerose località lungo le coste del Mediterraneo e in modo particolare le coste della Grecia Ionica, della Libia e quelle di Puglia, Basilicata, Calabria e Sicilia Sud-Orientale. In conseguenza dell’elevata velocità di propagazione dell’onda nelle profonde acque dello Ionio, il tempo di arrivo delle prime onde sulle coste italiane più vicine sarebbe stato di circa 20 minuti dal terremoto. L’area selezionata per la simulazione, il segmento occidentale dell’arco ellenico, è ben nota ai sismologi, coincide con un’importante zona di subduzione, e si caratterizza per l’elevata sismicità. In passato, terremoti avvenuti lungo la stessa struttura geologica hanno già dato luogo a imponenti tsunami, come quello verificatosi all’alba del 21 Luglio del 365 d.C. in una zona a sud-ovest di Creta.

In quel caso il terremoto, di magnitudo stimata superiore a 8, ha generato uno tsunami in grado di spazzare tutte le coste del Mediterraneo dall’Algeria alla Siria, distruggendo Alessandria d’Egitto, invadendo l’intero delta del Nilo e provocando gravi danni a Creta, Cipro, nella Grecia continentale, in Libia, nella Sicilia Orientale e persino nel Mar Adriatico (Stiros, 2001). Fenomeni di questo tipo si verificano con una certa frequenza anche nell’area del Mediterraneo, non sempre con proporzioni catastrofiche come quello del 365 d.C. ma non per questo innocui. Ad oggi il Catalogo degli Tsunami Euro-Mediterranei (EMTC), basato su fonti storiche, conta 290 eventi, tra cui il terribile tsunami che ha fatto seguito al terremoto di Reggio Calabria e Messina del 1908, causando migliaia di morti (Maramai, Brizuela e Graziani, 2014).

Ma non si tratta soltanto di eventi eccezionali accaduti in tempi lontani. Nei soli ultimi due anni il CAT-INGV ha monitorato cinque forti terremoti nel Mediterraneo, quattro dei quali hanno generato dei piccoli tsunami locali, inviando le prime allerte al Dipartimento della Protezione Civile in tempi compresi tra 9 e 12 minuti dal tempo origine dell’evento sismico.

Tempo origine (UTC) Regione Mag USGS Mag rapida  CAT Livello di allerta Tempo del  messaggio UTC (minuti dal tempo origine)

16/04/15

18:07

Crete (Greece)    6.4 6.4 Watch 18:16       (9’)

17/11/15

07:10

Ionian (Greece) 6.5 6.5 Advisory 07:22      (12’)

25/01/16

04:22

Gibraltar 6.5 6.5 Advisory 04:33      (11’)

12/6/17

12:28

Greece-Turkey 6.4 6.5 Advisory    12:38      (10’)
20/7/17

22:31

Turkey-Greece 6.6 6.8 Watch 22:41      (10’)

L’ultimo evento rilevato risale al 21 luglio 2017, quando un terremoto di magnitudo 6.7 avvenuto nell’arcipelago del Dodecaneso, e più precisamente nel tratto di mare prospiciente Kos (Grecia) e Bodrum (Turchia) ha generato uno tsunami relativamente piccolo, con onde che localmente hanno raggiunto la quota topografica di 1.5 metri rispetto al livello del mare (Yalçiner et al. 2017). In quell’occasione, in dieci minuti il Centro Allerta Tsunami aveva già calcolato i parametri del terremoto e lanciato la prima allerta, come descritto qui.

Uno degli obiettivi di questo tipo di esercitazioni consiste, per l’appunto, nel testare la creazione, l’invio e la ricezione dei messaggi di allerta da parte dei componenti del SiAM e degli Enti locali e, per quanto possibile, di simulare operativamente le azioni conseguenti, verificando anche i tempi necessari per le azioni di mitigazione dell’impatto sulle coste interessate. In quest’ottica, è stato istituito a livello internazionale lo Tsunami Awareness Day (Giornata della consapevolezza degli tsunami), che si tiene il 5 novembre 2017, in ricordo del grande tsunami che colpì il Giappone nel 1854.


Riferimenti bibliografici

Comunicato Stampa INGV del 3 novembre 2017

Maramai A., Brizuela B., Graziani L. (2014). The Euro-Mediterranean Tsunami Catalogue, Annals of Geophysics, 57, 4, S0435.

Stiros, S. C. (2001). The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. Journal of Structural Geology, 23(2), 545-562.

Yalçıner, A., Annunziato, A., Papadopoulos, G., Güney-Doğan, G., Gökhan-Güler, H., Eray- Cakir, T., Özer-Sözdinler, C., Ulutaş, E., Arikawa, T., Süzen, L., Kanoğlu, U., Güler, I., Probst, P., Synolakis, C. (2017). The 20th July 2017 (22:31 UTC) Bodrum-Kos Earthquake and Tsunami: Post Tsunami Field Survey Report, http://users.metu.edu.tr/yalciner/july-21-2017-tsunami-report/Report-Field-Survey-of-July- 20-2017-Bodrum-Kos-Tsunami.pdf.

Una mappa interattiva della sequenza di Amatrice-Visso-Norcia

Ad un anno dall’evento sismico di magnitudo 6.5 del 30 ottobre 2016 la sequenza sismica di Amatrice-Visso-Norcia continua a far registrare numerosi terremoti ogni giorno nell’area. Una quarantina in media, ad esempio, gli eventi giornalieri registrati in questi ultimi giorni, tutti di magnitudo molto bassa con pochi terremoti superiori a magnitudo 2.0.  Dal 24 agosto ad oggi il numero di eventi ha ormai superato la quota di 78.500, la maggior parte di magnitudo inferiore a 2.0. Infatti se consideriamo solo gli eventi al di sopra di questa soglia sono poco più di 12.000.

Numero giornaliero di terremoti localizzati dalla Rete Sismica Nazionale e cumulata del numero degli eventi sismici nell’area della sequenza (aggiornamento 30 ottobre 2017).

La sequenza di Amatrice-Visso-Norcia è stata anche caratterizzata da diverse importanti fasi temporali a partire dal 24 agosto 2016 fino ai primi mesi del 2017. Queste fasi, ben evidenziate anche nei picchi degli istogrammi del numero giornaliero di terremoti (vedi grafico qui sopra), sono state ricostruite attraverso un video che mostra la distribuzione dei terremoti localizzati dalla Rete Sismica Nazionale dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) in 5 intervalli temporali con colori differenti:

  • dal 1 al 23 agosto 2016 (verde chiaro)
  • dal 24 agosto al 25 ottobre 2016 (giallo)
  • dal 26 al 29 ottobre 2016 (arancione)
  • dal 30 ottobre 2016 al 17 gennaio 2017 (rosso)
  • dal 18 gennaio al 31 marzo 2017 (blu)

Gli eventi sismici rappresentati sono solo quelli di magnitudo uguale o maggiore di 2.0. Le stelle bianche indicano gli epicentri dei terremoti più forti della sequenza con magnitudo uguale o maggiore di 5.0.

Questo video è stato presentato durante la giornata “Insieme per convivere con i terremoti“, organizzata dall’INGV in collaborazione con il Comune ad Amatrice, all’interno del percorso  divulgativo realizzato per mostrare le attività dell’Istituto durante l’emergenza e curato dai gruppi operativi e di ricerca dell’INGV.  Nel percorso è stato dato ampio spazio alle mappe e alle applicazioni multimediali per raccontare la sismicità e la pericolosità sismica. In particolare è stata presentata una mappa interattiva della sequenza che permette di visualizzare ed interrogare gli eventi sismici in base alla magnitudo e alle fasi temporali.

L’interfaccia della mappa interattiva della sequenza di Amatrice-Visso-Norcia. Cliccare sulla mappa per accedere all’applicazione.

Nella mappa sono visualizzati tutti gli eventi sismici di magnitudo uguale o maggiore di 2.5 localizzati dalla Rete Sismica Nazionale dell’INGV nell’area dell’Italia centrale interessata dalla sequenza sismica dal 1 agosto 2016 al 31 agosto 2017.  E’ possibile filtrare gli eventi per magnitudo e per periodo temporale attraverso delle selezioni predefinite: ad esempio, i terremoti maggiori\uguali di magnitudo 4.0, oppure gli eventi registrati tra il 26 e il 29 ottobre 2016. Alcuni filtri sono stati impostati in base alle fasi temporali della sequenza già descritte in precedenza.

Un esempio di applicazione di due filtri (uno sulla magnitudo ed uno temporale) sulla mappa. L’info-grafica mostra il numero di eventi come risultato dei filtri applicati.

Possono essere applicati anche più filtri, ad esempio uno sulla magnitudo ed uno temporale: un’info-grafica mostra il numero di terremoti risultanti dall’applicazione dei filtri e mostrati nella mappa. Inoltre è possibile in ogni momento interrogare ciascun terremoto sulla mappa per visualizzare le informazioni rispetto alla data, la magnitudo e la profondità ipocentrale.

Un’altra importante modalità di interazione è la possibilità di attivare il cursore TEMPO, una funzionalità che permette di impostare un’intervallo temporale personalizzato per la visualizzazione in mappa dei terremoti o per far partire una animazione scegliendo tra diverse velocità.

Il cursore TEMPO permette di creare delle animazioni della sequenza con intervalli temporali personalizzati .

La mappa interattiva è disponibile all’interno della galleria “story maps & terremoti” o direttamente al seguente link: http://arcg.is/1nfnHG.

a cura di Maurizio Pignone, INGV-Centro Nazionale Terremoti.

Insieme per convivere con i terremoti, Amatrice 29-30 ottobre 2017

A più di un anno dall’inizio della sequenza sismica che ha colpito il Centro Italia, l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) incontra cittadini e studenti di Amatrice per presentare i risultati del lavoro svolto dall’Istituto durante questi mesi, la storia sismica dell’area, le prospettive di ricerca sui terremoti e le ultime novità sulle tecniche ricostruttive nel campo dell’edilizia. Una due giorni di conferenze, seminari, incontri e caffè scientifici.

Dopo il Festival del Cinema di Venezia 2017, sarà proiettato ad Amatrice il documentario di Gianni Amelio, Casa d’altri, girato e dedicato alla città reatina, prodotto da Bartleby con Rai Cinema. Gianni Amelio torna per la prima volta sui luoghi del set per presentare la sua opera alla città. Saranno presenti il Produttore Massimo Di Rocco e il Responsabile Rapporti Istituzionali Rai Cinema Carlo Brancaleoni.

Un percorso divulgativo descriverà le attività dell’Istituto durante l’emergenza, curato dai gruppi operativi e di ricerca INGV. Si parlerà degli effetti geologici prodotti in superficie da eventi sismici e di quelli di sito legati alla geologia del sottosuolo, del danneggiamento/risentimento, degli spostamenti del suolo visti da satellite e di cosa accade durante un processo sismico. Ampio spazio alle mappe e alle applicazioni multimediali per raccontare la sismicità e la pericolosità sismica del nostro territorio.

Infine, visite alla Sala di Sorveglianza Sismica, riprodotta all’interno della Tenda del Centro Operativo Emergenze Sismiche dell’INGV, per conoscere da vicino cosa fanno i sismologi durante il servizio di sorveglianza sismica e imparare a localizzare un terremoto.

Domenica 29 ottobre dalle 11.00 alle 17.00 – Conferenza, Tenda Cinema

A dare il benvenuto, il Sindaco di Amatrice Sergio Pirozzi e il Direttore Generale dell’INGV Maria Siclari.

Aprirà i lavori il Presidente dell’INGV, Carlo Doglioni, che introdurrà la sequenza sismica del 2016-2017 e il contributo dell’INGV.

Interverranno: i sismologi INGV Romano Camassi e Giovanna Cultrera (I terremoti del passato e gli effetti di sito); l’ingegnere dell’Università degli Studi di Roma “La Sapienza”, Sonia Giovinazzi (Il comportamento sismico degli edifici e le tecniche ricostruttive); il Direttore della Struttura Terremoti-INGV, Daniela Pantosti (Le prospettive di ricerca sui terremoti).

Nel pomeriggio, incontro con il regista Gianni Amelio e proiezione del suo documentario Casa d’altri (2017, 16 minuti), girato e dedicato ad Amatrice, prodotto da RAI Cinema.

A seguire, appuntamento al Caffè scientifico con gli esperti INGV.

Lunedì 30 ottobre, dalle 9.30 alle 16.30 – presso la scuola e la Tenda Cinema

Un programma interamente dedicato alle scuole. La mattina, appuntamento con i ragazzi del liceo scientifico nel laboratorio Le città invisibili. Tratto liberamente dall’omonimo libro di Italo Calvino, il laboratorio si focalizza su ciò che il terremoto ha trasformato, concentrandosi sui concetti di memoria, relazioni, desideri.

Nel pomeriggio, incontro introduttivo al progetto “EDURISK per RIETI” (Percorsi educativi per la riduzione del rischio), rivolto ai docenti.

Scarica la locandina dell’evento


Comunicato Stampa INGV del 25 ottobre 2017

 

Terremoti in provincia di Trapani, ottobre 2017

Una sequenza sismica ha interessato nei giorni scorsi l’area di Castelvetrano, in provincia di Trapani, e più precisamente dal 27 settembre scorso, quando un evento di magnitudo 2.6 si è verificato nei pressi del lago artificiale della Trinità, formato per lo sbarramento del fiume Delia. Da allora gli eventi di magnitudo superiore a 2 sono stati 5 in tutto, anche se moltissimi altri di magnitudo più piccola si sono succeduti e, a causa della loro modesta profondità ipocentrale (tra 2 e 8 km), sono stati a volte avvertiti dalla popolazione.

Sismogramma della stazione sismica CAVT di Castelvetrano (TP) tra il 17 e il 19 ottobre. Sono visibili molti piccoli terremoti e quello di magnitudo 2.4 avvenuto il 19 ottobre alle ore 06.16 italiane (ora 04.16 UTC).

L’area di Castelvetrano è stata tra quelle colpite dalla disastrosa sequenza sismica iniziata il 14 gennaio 1968, che provocò danni ingenti e vittime in molti paesi della Valle del Belice.

Sismogramma del terremoto del Belice del 15 Gennaio 1968 (Mw 6.4, CPTI15), registrato dalla stazione di Messina

I modelli sismotettonici di questa regione sono stati inizialmente condizionati dall’ipotesi di faglie trascorrenti attive orientate N-S presenti nell’avampaese siciliano. Secondo questa ipotesi, tali faglie sono state considerate responsabili dei maggiori terremoti della Sicilia occidentale (es. l’evento del Belice nel 1968, Gasparini et al., 1985; Meletti et al., 2008). L’ultima zonazione del territorio nazionale (ZS9) segue questo schema sismotettonico. In essa la Sicilia appare nella parte centro-occidentale come un grande dominio asismico, con la sola esclusione di una fascia N-S comprendente l’area del Belice (Zona 934 della ZS9, Meletti et al., 2008).

In maniera alternativa, altri ricercatori (Lavecchia et al., 2007) hanno proposto come sorgente principale dei maggiori eventi sismici che hanno colpito la Sicilia centro-meridionale il sovrascorrimento alla base della catena orogenica (Sicilian Basal Thrust, si veda figura sotto).

Schema strutturale semplificato della struttura a thrust presente nell’area del Belice-Castelvetrano.

In questo studio hanno diviso la provincia sismogenetica compressiva in due sotto province, una superficiale e una profonda, sulla base dell’analisi dei terremoti storici e strumentali (di magnitudo M>4) con ipocentro compreso tra 0 e 30 km di profondità, e la realizzazione di sezioni geologiche e geofisiche regionali. La parte più superficiale, fino a 10 km di profondità, sarebbe strutturalmente caratterizzata dalla presenza di pieghe, faglie inverse (thrust) e faglie trascorrenti (strike-slip) originatesi a partire dal Pliocene superiore. La porzione profonda, tra 10 e 25 km di profondità, è caratterizzata da terremoti con meccanismi focali compressivi da thrust e trascorrenti con assi P orientati circa N-S (Anderson e Jackson, 1987; Frepoli e Amato, 2000; Neri et al., 2005; Pondrelli et al., 2006; Montone et al., 2012). A tale sub-provincia questi ricercatori attribuiscono l’origine di 11 terremoti con magnitudo compresa tra 4.5 e 5.5 avvenuti in Sicilia occidentale, fra cui quello dell’area del Belice del 1968.

Attraverso l’integrazione di dati SAR, GPS, morfotettonici, archeosismologici e di geofisica marina, lo studio multidisciplinare di Barreca et al. (2014) ha evidenziato l’attività di una faglia orientata NE-SO tra Castelvetrano e Campobello di Mazara come rampa di thrust obliqua (si intende un sovrascorrimento la cui direzione forma un angolo acuto rispetto alla direzione di trasporto tettonico; al contrario, in una rampa frontale le due direzioni sono ortogonali) immergente a NO, che potrebbe essere responsabile della sismicità storica dell’area. Tale attività coinvolge anche un insediamento archeologico di età greco-romana e potrebbe avere avuto un ruolo sia nei terremoti connessi alla distruzione della città greca di Selinunte, che nella sequenza simica del 1968 (figura sotto).

La sequenza sismica della Valle del Belice ed i terremoti di Selinunte. In blu la localizzazione e il meccanismo focale dell’ultimo terremoto di magnitudo Mw 4.9 verificatosi in Sicilia sudoccidentale il 7 giugno 1981 (da Barreca et al., 2014 che erroneamente riporta la data del 22 giugno 1981).

Quello che si evince da queste analisi è che stiamo parlando di un’area caratterizzata da una geodinamica particolarmente importante e che è dunque soggetta a crisi sismiche di varia entità. Nelle figure che seguono vengono rappresentate le distribuzioni, nel tempo e nello spazio, degli eventi che hanno interessato l’area della Sicilia sudoccidentale negli ultimi 30 anni. Sono chiaramente visibili quattro raggruppamenti temporali negli anni 1998, 2005-2006, 2010-2012, 2014-2015.

Distribuzione spaziale dei terremoti avvenuti in Sicilia sud-occidentale dal 1985 ad oggi (fonte dati http://info.terremoti.ingv.it/). Utilizzando colori diversi per evidenziare i diversi periodi temporali.

Andamento temporale delle sequenze sismiche che hanno interessato la Sicilia sudoccidentale dal 1985 in poi. In figura sono anche riportate le profondità ipocentrali degli eventi e la loro magnitudo.

L’attuale sequenza sembrerebbe aver avuto inizio alla fine del 2016, con alcuni eventi localizzati intorno alla città di Calatafimi, seguiti a maggio di quest’anno da un altra serie di terremoti con epicentro intorno a Menfi. La generale variabilità della distribuzione degli epicentri è da ricollegare a diversi fattori (non ultimi la disponibilità di dati e la qualità della rete sismica), ma certamente sono stati attivati vari sistemi faglie che hanno in comune un prevalente rilascio energetico a livello superficiale, tra i 5 e i 15 km di profondità.

Anche la sequenza che si sta verificando in questi giorni presenta questa caratteristica e ciò spiegherebbe anche la marcata percettibilità dei terremoti nell’area più prossima alle localizzazioni epicentrali. In estrema sintesi, dunque, tale sismicità sarebbe da associare alle strutture di “accomodamento” (splays frontali rappresentate nella terza figura) delle pieghe profonde, che si manifestano in superficie anche con fessurazioni sul terreno e fenomeni di creeping (movimenti della superficie lenti e asismici) rilevabili con reti geodetiche o telerilevamento SAR.

a cura di Mario Mattia  (INGV, Sezione di Catania) e Paolo Madonia (INGV, Sezione di Palermo).


Bibliografia

Anderson, H., J. Jackson (1987), Active tectonics of the Adriatic region. Geophys, J. R. Astron. Soc., 91, 937-983.

Barreca G., V. Bruno, C. Cocorullo, F. Cultrera, L. Ferranti, F. Guglielmino, L. Guzzetta, M. Mattia, C. Monaco, F. Pepe (2014), Geodetic and geological evidence of active tectonics in south-westernSicily (Italy). J. Geodyn., doi: 10.1016/j.jog.2014.03.004.

Frepoli, A., A. Amato (2000), Spatial variation in stresses in peninsular Italy and Sicily from background seismicity. Tectonophysics, 317, 109-124.

Gasparini, C., G. Iannaccone, R. Scarpa (1985), Fault-plane solutions and seismicity of the Italian peninsula. Tectonophysics, 117, 59-78.

Lavecchia, G., F. Ferrarini, R. de Nardis, F. Visini, M. S. Barbano (2007), Active thrusting as a possible seismogenic source in Sicily (Southern Italy): Some insights from integrated structural-kinematic and seismological data. Tectonophysics, 445, 145-167. doi:10.1016/j.tecto.2007.07.007.

Meletti, C., F. Galadini, G. Valensise, M. Stucchi, R. Basili, S. Barba, G. Vannucci, E. Boschi (2008), A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics, 450, 85–108, doi:10.1016/j.tecto.2008.01.003.

Montone, P., M. T. Mariucci, S. Pierdominici (2012), The Italian present-day stress map, Geophys. J. Int., 189, 705-716, doi:10.1111/j.1365-246X.2012.05391.x.

Neri, G., G. Barberi, G. Oliva, B. Orecchio (2005), Spatial variations of seismogenic stress orientations in Sicily, south Italy. Phys. Earth Planet. Int., 148, 175-191.

Pondrelli, S., S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini and G. Vannucci, 2006, The Italian CMT dataset from 1977 to the present, Phys. Earth Planet. Int.doi:10.1016/j.pepi.2006.07.008,159/3-4, pp. 286-303.

%d blogger hanno fatto clic su Mi Piace per questo: